quantum entanglement topological order and tensor
play

Quantum entanglement, topological order, and tensor category theory - PowerPoint PPT Presentation

Quantum entanglement, topological order, and tensor category theory Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category Local


  1. Quantum entanglement, topological order, and tensor category theory Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  2. Δ Local unitary trans. de fi nes gapped quantum phases Two gapped states, | Ψ (0) � and | Ψ (1) � (or more precisely, two ground state subspaces), are in the same phase i ff they are related through a local unitary (LU) evolution � 1 0 dg � H ( g � ) � � e − i | Ψ (1) � = P | Ψ (0) � where H ( g ) = � i O i ( g ) and O i ( g ) are local hermitian operators. Hastings, Wen 05; Bravyi, Hastings, Michalakis 10 • LU evolution = local unitary transformation : � 1 � 0 dg H ( g ) � e − i T | Ψ (1) � = P | Ψ (0) � − >finite gap ground − state subspace = | Ψ (0) � ε − > 0 • The local unitary transformations de fi ne an equivalence relation: Two gapped states related by a local unitary transformation are in the same phase. A gapped quantum phase is an equivalence class of local unitary transformations – a conjecture. Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  3. ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ Δ ψ ψ A gapped quantum liquid phase: • A gapped quantum phase: N 1 N N N 2 3 4 H N 1 , H N 2 , H N 3 , H N 4 , · · · LU LU LU LU H � N 1 , H � N 2 , H � N 3 , H � N 4 , · · · ’ ’ ’ ’ N 1 N N N 2 3 4 N i +1 = sN i , s ∼ 2 • A gapped quantum liquid phase: gLU gLU gLU N 1 N N N H N 1 , H N 2 , H N 3 , H N 4 , · · · 2 3 4 LU LU LU LU H � N 1 , H � N 2 , H � N 3 , H � N 4 , · · · ’ ’ ’ ’ N k +1 = sN k , s ∼ 2 N 1 N N N 2 3 4 Generalized local unitary (gLU) trans. N N N k+1 k k − >finite gap ground − state gLU LU subspace ε − > 0 • 3+1D toric code model → a 3+1D gaped quantum liquid. • Stacking 2+1D FQH states and Haah cubic model → gapped quantum state, but not liquids. Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  4. Bosonic/fermionic gapped quantum phases Both local bosonic and fermionic systems have the following local property: V tot = ⊗ i V i | Ψ (1) � = | Ψ (0) � • Bosonic gapped phases are the equivalent classes of LU transformation: LU = � U ijk , which acts within V i ⊗ V j ⊗ V k , and [ U ijk , U i � j � k � ] = 0, e.g. U ijk = e i ( b i b j b † k + h . c . ) • Fermionic gapped phases are the equivalent classes of fermionic LU transformation: fLU = � U f ijk , which does not act within ijk = e i ( c i c j c † k c k + h . c . ) V i ⊗ V j ⊗ V k , but [ U f ijk , U f i � j � k � ] = 0, e.g. U f Gapped quantum liquids for bosons and fermions have very di ff erent mathematical structures Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  5. LU trans. de fi nes long-range entanglement (ie topo. order) For gapped systems with no symmetry : • According to Landau theory, no symmetry to break → all systems belong to one trivial phase Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  6. LU trans. de fi nes long-range entanglement (ie topo. order) For gapped systems with no symmetry : • According to Landau theory, no symmetry to break → all systems belong to one trivial phase • Thinking about entanglement: Chen-Gu-Wen 2010 - There are long range entangled (LRE) states - There are short range entangled (SRE) states | LRE � � = | product state � = | SRE � local unitary transformation LRE SRE state product state Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  7. LU trans. de fi nes long-range entanglement (ie topo. order) For gapped systems with no symmetry : • According to Landau theory, no symmetry to break → all systems belong to one trivial phase • Thinking about entanglement: Chen-Gu-Wen 2010 - There are long range entangled (LRE) states → many phases - There are short range entangled (SRE) states → one phase g | LRE � � = | product state � = | SRE � 2 topological order LRE 1 LRE 2 local unitary local unitary local unitary transformation transformation transformation phase transition LRE SRE SRE SRE LRE 1 LRE 2 SRE state product product product state state state • All SRE states belong to the same trivial phase g 1 • LRE states can belong to many di ff erent phases = di ff erent patterns of long-range entanglements de fi ned by the LU trans. = di ff erent topological orders Wen 1989 → A classi fi cation by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010 Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  8. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  9. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  10. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → more entangled Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  11. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� = ( | ↑� + | ↓� ) ⊗ ( | ↑� + | ↓� ) = | x � ⊗ | x � → unentangled Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  12. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� = ( | ↑� + | ↓� ) ⊗ ( | ↑� + | ↓� ) = | x � ⊗ | x � → unentangled • = | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓� ... → unentangled Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  13. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� = ( | ↑� + | ↓� ) ⊗ ( | ↑� + | ↓� ) = | x � ⊗ | x � → unentangled • = | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓� ... → unentangled • = ( | ↓↑� − | ↑↓� ) ⊗ ( | ↓↑� − | ↑↓� ) ⊗ ... → short-range entangled (SRE) entangled Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  14. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� = ( | ↑� + | ↓� ) ⊗ ( | ↑� + | ↓� ) = | x � ⊗ | x � → unentangled • = | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓� ... → unentangled • = ( | ↓↑� − | ↑↓� ) ⊗ ( | ↓↑� − | ↑↓� ) ⊗ ... → short-range entangled (SRE) entangled � � • Crystal order: | Φ crystal � = = | 0 � x 1 ⊗ | 1 � x 2 ⊗ | 0 � x 3 ... � � = direct-product state → unentangled state (classical) Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  15. Quantum entanglements through examples • | ↑� ⊗ | ↓� = direct-product state → unentangled (classical) • | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum) • | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� = ( | ↑� + | ↓� ) ⊗ ( | ↑� + | ↓� ) = | x � ⊗ | x � → unentangled • = | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓� ... → unentangled • = ( | ↓↑� − | ↑↓� ) ⊗ ( | ↓↑� − | ↑↓� ) ⊗ ... → short-range entangled (SRE) entangled � � • Crystal order: | Φ crystal � = = | 0 � x 1 ⊗ | 1 � x 2 ⊗ | 0 � x 3 ... � � = direct-product state → unentangled state (classical) • Particle condensation (super fl uid) � � | Φ SF � = � � all conf. � Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend