quantum entanglement and local excitations
play

Quantum Entanglement and Local Excitations Pawe Caputa HMSCS, - PowerPoint PPT Presentation

Quantum Entanglement and Local Excitations Pawe Caputa HMSCS, GGI, 12/03/2015 Based on : Entanglement of local operators in large-N conformal field theories with Masahiro Nozaki, Tadashi Takayanagi PTEP 2014 (2014) 9, 093B06


  1. Quantum Entanglement and Local Excitations Pawe ł Caputa HMSCS, GGI, 12/03/2015

  2. Based on : “Entanglement of local operators in large-N conformal field theories” • with Masahiro Nozaki, Tadashi Takayanagi PTEP 2014 (2014) 9, 093B06 “Quantum Entanglement of Localised Excited States at Finite Temperature” • with Joan Simon, Andrius Stikonas, Tadashi Takayanagi JHEP 1501 (2015) 102 “To appear…” • with Joan Simon, Andrius Stikonas, Tadashi Takayanagi, Kento Watanabe

  3. Entanglement Renyi Entropies B A ρ = | ψ i h ψ | ρ A = Tr B ρ Renyi Entropies 1 S ( n ) 1 − n ln Tr ( ρ n = A ) A von-Neumann S (1) = − Tr ( ρ A ln ρ A ) A

  4. � � � � � � � � � � � � � � � � � � � � � � � � � � � � Entanglement Entropy in AdS/CFT � � � � � � � � � � � � � � � � � � � � [Ryu,Takayanagi’06] � � � � CFT � � (We omit the time direction. ) d 1 S A = Area( γ d A ) � � � � � � � � � 4 G d +2 � � � � � A N � � � � [Hubeny,Rangamani,Takayanagi’07] AdS � z B d 2 � � � � Covariant � � � � � � � � � � z Disconnected regions (Mutual Information) � � � � � � I A : B = S A + S B − S A ∪ B

  5. Question: CFT in 1+1d [see Cardy,Calabrese…] 3 log | A | S A ∼ c A ε o h A ρ ( t ) = e − iHt O ( x ) | 0 i h 0 | O † ( x ) e iHt S A ( t ) ?

  6. Motivation (CFT): Characterise operators from the perspective of quantum entanglement Motivation (AdS/CFT): This Talk: Modest step towards this…

  7. Plan • Entanglement and locally exited states • Large c limit and AdS/CFT • Finite temperature • Mutual information • Scrambling time

  8. Entanglement and locally exited states ρ ( t, x ) = N e − iHt e − ✏ H O ( x ) | 0 i h 0 | O ( x ) e − ✏ H e iHt Tr ( ρ n A ) √ ! Tr( Ω n w 1 ) O † ( w 2 , ¯ ∑ h O ( w 1 , ¯ ∏ 1 A ) 1 w 2 ) ...O ( w 2 n , ¯ w 2 n ) i Σ n ∆ S ( n ) = 1 ° n log = 1 ° n log w 2 ) i Σ 1 ) n A Tr( Ω (0) ( h O ( w 1 , ¯ w 1 ) O † ( w 2 , ¯ A ) n [Sierra et al.,’12] [Nozaki,Numasawa,Takayanagi,’13]

  9. Rational CFT [He,Numasawa,Takayanagi,Watanabe’14] (n=2) h O ( w 1 , ¯ w 1 ) O ( w 2 , ¯ w 2 ) O ( w 3 , ¯ w 3 ) O ( w 4 , ¯ w 4 ) i Σ 2 = | z | 2 ∆ O | 1 � z | 2 ∆ 0 G O ( z, ¯ z ) w 2 ) i Σ 1 ) 2 ( h O ( w 1 , ¯ w 1 ) O ( w 2 , ¯ � � � � � � � � � � � � � � � � � � � � � At late time ( z, ¯ z ) → (1 , 0) � ed tities ! In rational CFTs z ) ' F 00 [ O ] · (1 � z ) − 2 ∆ O ¯ z − 2 ∆ O , G ( z, ¯ � � � � � � � � � � � : � S A � 2 � � `topologically invariant’ ∆ S (2) A = � log F 00 [ O ] = log d O , 1.0 0.8 0.6 d ∆ = S 0 ∆ quantum dimension 0.4 S 00 0.2 “EPR pair propagating through the system” 3.0 t 0.0 0.5 1.0 1.5 2.0 2.5

  10. Large c [PC,M.Nozaki,T.Takayanagi14] Conformal block expansion OO † ) 2 F O ( b | z ) ¯ X ( C b G ( z, ¯ z ) = F O ( b | ¯ z ) b at large central charge c [Fateev,Ribault’11] F O ( b | z ) ' z ∆ b − 2 ∆ O · 2 F 1 ( ∆ b , ∆ b , 2 ∆ b , z ) H 2 L D S A at late time ' 4 ∆ O · log 2 t ∆ S (2) A ✏ similar to a local quench t t l 10

  11. Energy density ⟨ T tt ⟩ = ⟨ O † ( w 2 , ¯ w 2 ) T tt ( x, x ) O ( w 1 , ¯ w 1 ) ⟩ � 1 1 � = ∆ O � 2 (( x + l − t ) 2 + � 2 ) 2 + (( x + l + t ) 2 + � 2 ) 2 ⟨ O † ( w 2 , ¯ w 2 ) O ( w 1 , ¯ w 1 ) ⟩ (39 N w 1 = i ( � − it ) − l, w 2 = − i ( � + it ) − l, w 1 = − i ( � − it ) − l, ¯ w 2 = i ( � + it ) − l. ¯ E ∼ ∆ O ✏

  12. Falling particle of mass m in AdS [Nozaki,Numasawa,Takayanagi’13] [PC,Nozaki,Takayanagi’14] CFT (chain) L In our setup: ↵ ≡ ✏  sin ⇡ a �  t �  sin ⇡ a � t ( L − t ) ∆ S (1) ∼ c → ∆ S (1) ∼ c + c 6 log 6 log 6 log a ✏ L a ✏ r 1 − µ a = R 2

  13. Twist operators [Bernamonti et al.’14] ρ ( t ) = Ne − iHt O ( x 4 , ¯ x 1 ) e iHt x 4 ) | 0 i h 0 | O ( x 1 , ¯ A = h O ( x 1 , ¯ x 1 ) σ ( x 2 , ¯ x 2 )˜ σ ( x 3 , ¯ x 3 ) O ( x 4 , ¯ x 4 ) i CF T n /Z n Tr ρ n x 4 ) i n h O ( x 1 , ¯ x 1 ) O ( x 4 , ¯ x 2 = l 1 − t, x 3 = l 2 − t x 1 = i ✏ , x 4 = − i ✏ ¯ ¯ x 2 = l 1 + t, x 3 = l 2 + t x 1 = − i ✏ , x 4 = i ✏ ¯ ¯ Tr ρ n A = | x 23 | − 4 ∆ n | 1 − z | 4 ∆ n G n ( z, ¯ z )

  14. Large c limit of conformal blocks [Zamolodchikov….] z ) ∼ e f ( z, ¯ z ) G ( z, ¯ c → ∞ Two-heavy and two light operators [Fitzpatrick et al.’14] h/c → 0 ∆ O /c − fixed ! − 2 h 1 − α 1 − α r 2 (1 � z α )¯ 2 (1 � ¯ z α ) 1 − 24 ∆ O z z G ( z, ¯ z ) ' α = α 2 c Using this we can compute  sin ⇡↵ � t ( L − t ) ∆ S (1) ∼ c 6 log t < L ✏ L ↵

  15. Back-reaction from a point particle in AdS [Horowitz,Itzhaki’99] R 2 dr 2 � � r 2 + R 2 − M ds 2 = − d τ 2 + R 2 + r 2 − M/r d − 2 + r 2 d Ω 2 d − 1 . r d − 2 m = ( d − 1) π d/ 2 − 1 M G N R 2 . · 8 Γ ( d/ 2) In order to find a back-reaction from a particle in AdS we “just” have to find the map to the r=0 solution in global AdS and insert to the above metric

  16. Details: dz 2 − dt 2 + � d − 1 � � i =1 dx 2 ds 2 = R 2 i z 2 � z ( t ) 2 1 − ˙ � ( t − t 0 ) 2 + α 2 , � S = − mR dt . z ( t ) = z ( t )

  17. Map: R 2 + r 2 cos τ = R 2 e β + e − β ( z 2 + x 2 − t 2 ) � , 2 z R 2 + r 2 sin τ = Rt � ↵ = ✏ = Re β z , r Ω i = Rx i ( i = 1 , 2 , · · · , d − 1) , z r Ω d = − R 2 e β + e − β ( z 2 + x 2 − t 2 ) . 2 z Back reacted metric after inserting: r = 1 � R 4 e 2 β + e − 2 β ( z 2 + x 2 i − t 2 ) 2 − 2 R 2 ( z 2 − x 2 − t 2 ) , 2 z d d τ 2 = d (cos τ ) 2 + d (sin τ ) 2 , � d Ω 2 ( d Ω i ) 2 . d − 1 = i =1 we can check that we get the appropriate energy density

  18. Entanglement Entropy (d=2) √ √ ✓ ◆ ✓ ◆ 2 3 R 2 − µ R 2 − µ 2 cos | ∆ ˜ ⌧ ∞ | − 2 cos | ∆ � ∞ | R R S A = c 6 r (1) ∞ · r (2) 7 � � 4 log + log 6 7 R 2 − µ 6 ∞ 5 where 2 Rt tan τ ( i ) ∞ = R 2 e β + e − β (( l ( i ) ) 2 − t 2 ) , 2 Rl ( i ) tan θ ( i ) ∞ = − e − β (( l ( i ) ) 2 − t 2 ) − R 2 e β , � ∞ = 1 R 2 ( l ( i ) ) 2 + 1 e − β (( l ( i ) ) 2 − t 2 ) − R 2 e β � 2 . r ( i ) � 4 z ∞  sin ⇡ a �  t �  sin ⇡ a � t ( L − t ) ∆ S (1) ∼ c → ∆ S (1) ∼ c + c 6 log 6 log 6 log a ✏ L a ✏

  19. Finite Temperature I A : B = S A + S B − S A ∪ B

  20. Eternal BH-TFD duality [Maldacena’01] t − H L H R Eternal BH t + 1 2 E n | n i L | n i R e � β X | Ψ β i = TFD p Z ( β ) n

  21. [Maldacena Hartman] Evolution of EE in TFD [Morrison,Roberts] B t < L/ 2 S A ∪ B ' t A t > L/ 2 S A ∪ B ' 2 S th I A : B = S A + S B − S A ∪ B I A : B H L H R H L - H R H L + H R t L / 2

  22. [P.C,Simon,Stikonas,Takayanagi’14] Operator Insertion to TFD ? � � � � Eternal BH O L | ψ β > TFD

  23. | ψ 0 i = e � iH L t w O ( x ) e iH L t w | ψ i [Shenker,Stanford] [Roberts,Stanford] I A : B ( t w ) = 0? [+ Susskind] t w ∼ β log c ∼ β log S

  24. Point particle in BTZ [PC,Simon,Stikonas,Takayanagi’14] ds 2 = R 2 dz 2 ✓ ◆ dt 2 + � 1 � Mz 2 � (1 � Mz 2 ) + dx 2 � z 2 s Z d ⌧ z ( ⌧ ) 2 ˙ 1 � Mz ( ⌧ ) 2 � S p = � mR z ( ⌧ ) 1 � Mz ( ⌧ ) 2 T v ◆ 2 ! ✓ u ✓ 2 ⇡✏ ✓ 2 ⇡⌧ ◆◆ z ( ⌧ ) = � u 1 � tanh 2 t 1 � 1 � . X 2 ⇡ � �

  25. Check: Entanglement Entropy gravity sinh π ( t + t w ) sinh π ( L − t − t w ) " # ∆ S A ' c � sin a β β 6 log sinh π L ⇡✏ a β CFT large c x 3 ) † ( x 4 , ¯ A ( t ) = h ( x 1 , ¯ x 1 ) � ( x 2 , ¯ x 2 )˜ � ( x 3 , ¯ x 4 ) i C n 2 π Tr ⇢ n w ( x ) = e β x x 4 ) i C 1 ) n x 1 ) † ( x 4 , ¯ ( h ( x 1 , ¯ O ≡ ψ ⇣ ⌘ ⇣ ⌘ 2 3 π ( L − t − t w ) π ( t + t w ) sinh sinh sin ⇡↵ ψ ∆ S A = c 4 � β β 6 log 5 ⇣ ⌘ ⇡✏ ↵ ψ π L sinh β

  26. Point particle in Kruskal coordinates = R 2 � 4 dT 2 + 4 dX 2 + (1 � T 2 + X 2 ) 2 d � 2 ds 2 = R 2 � 4 dudv + ( � 1 + uv ) 2 d � 2 (1 + T 2 � X 2 ) 2 (1 + uv ) 2 1 � Mz 2 = (1 � M ✏ 2 ) cosh � 2 ⇣ p ⌘ t � = ˜ ⌧ , ✓ = 0 , M (˜ ⌧ + t ω ) our solution in v(u) or T(X) is valid everywhere T T v ( u ) = − a 1 u − 1 u v , u + a 2 we can compute the back reaction using a map with two parameters X X X h - X h + √ λ 1 = Mt w p 1 − M ✏ 2 tanh � 2 =

  27. Large t w T u v X X m X h - X s - X h + X s + T m

  28. Mutual Information CFT [PC,Simon,Stikonas,Takayanagi,Watanabe] S A ∪ B B A O ≡ ψ x 6 ) † ( x 4 , ¯ A ( t ) = h ( x 1 , ¯ x 1 ) � ( x 2 , ¯ x 2 )˜ � ( x 3 , ¯ x 3 ) � ( x 5 , ¯ x 5 )˜ � ( x 6 , ¯ x 4 ) i Tr ⇢ n x 4 ) i C 1 ) n x 1 ) † ( x 4 , ¯ ( h ( x 1 , ¯

  29. Mutual Information results [PC,Simon,Stikonas,Takayanagi,Watanabe] I A : B ( t − , t + , t w , L, a ) = I A : B ( t − , t + , t w , L, α ) I A : B ( t ∗ w ) = 0? S ! = f ( L, � ) + � t ? 2 ⇡ log ⇡ E ✓ ◆ q 1 � 24 ∆ O sin ⇡ c ' 3 � ∆ O � = ⇡ E O 4 ⇡✏ q c ✏ S 1 � 24 ∆ O c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend