quantum complex projective spaces
play

Quantum Complex Projective Spaces Fredholm modules, K-theory, - PowerPoint PPT Presentation

Quantum Complex Projective Spaces Fredholm modules, K-theory, spectral triples Francesco DAndrea Universit Catholique de Louvain Chemin du Cyclotron 2, Louvain-La-Neuve, Belgium September 1, 2009 09GENCO: Noncommutative Geometry and


  1. Quantum Complex Projective Spaces Fredholm modules, K-theory, spectral triples Francesco D’Andrea Université Catholique de Louvain Chemin du Cyclotron 2, Louvain-La-Neuve, Belgium September 1, 2009 09GENCO: Noncommutative Geometry and Quantum Physics (Vietri sul Mare) Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 1 / 23

  2. Introduction s sphere S ✷ q = SU q ( ✷ ) /U ( ✶ ) (here ✵ < q < ✶ ). A case study: the standard Podle´ L. D ˛ abrowski – A. Sitarz Dirac operator on the standard Podle´ s quantum sphere Banach Center Publ. 61 (2003), 49–58. K. Schmüdgen – E. Wagner Dirac operator and a twisted cyclic cocycle on the standard Podle´ s quantum sphere J. Reine Angew. M. 574 (2004), 219–235. R. Oeckl Braided Quantum Field Theory CMP 217 (2001) 451–473. Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 2 / 23

  3. Introduction s sphere S ✷ q = SU q ( ✷ ) /U ( ✶ ) (here ✵ < q < ✶ ). A case study: the standard Podle´ L. D ˛ abrowski – A. Sitarz Dirac operator on the standard Podle´ s quantum sphere Banach Center Publ. 61 (2003), 49–58. K. Schmüdgen – E. Wagner Dirac operator and a twisted cyclic cocycle on the standard Podle´ s quantum sphere J. Reine Angew. M. 574 (2004), 219–235. R. Oeckl Braided Quantum Field Theory CMP 217 (2001) 451–473. Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 2 / 23

  4. Introduction s sphere S ✷ q = SU q ( ✷ ) /U ( ✶ ) (here ✵ < q < ✶ ). A case study: the standard Podle´ ◮ L. D ˛ abrowski – A. Sitarz Prescribed Hilbert space + Dirac operator on the standard Podle´ s SU q ( ✷ ) equivariance = unique quantum sphere real spectral triple (modulo Banach Center Publ. 61 (2003), 49–58. equivalences). � � K. Schmüdgen – E. Wagner Spectrum ( D ) = ± [ n ] q n � ✶ Dirac operator and a twisted cyclic cocycle with [ n ] q := q n − q − n q − q − ✶ . on the standard Podle´ s quantum sphere The spectrum of D diverges J. Reine Angew. M. 574 (2004), 219–235. exponentially � the resolvent ( D ✷ + m ✷ ) − ✶ of the Laplacian is R. Oeckl of trace class. Braided Quantum Field Theory CMP 217 (2001) 451–473. Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 2 / 23

  5. Introduction s sphere S ✷ q = SU q ( ✷ ) /U ( ✶ ) (here ✵ < q < ✶ ). A case study: the standard Podle´ L. D ˛ abrowski – A. Sitarz The representation in DS Dirac operator on the standard Podle´ s spectral triple is the direct sum quantum sphere of two copies of the left regular Banach Center Publ. 61 (2003), 49–58. representation. ◮ K. Schmüdgen – E. Wagner Generators of U q (su( ✷ )) are Dirac operator and a twisted cyclic cocycle (external) derivations on S ✷ q . on the standard Podle´ s quantum sphere With these one constructs D . J. Reine Angew. M. 574 (2004), 219–235. D ✷ is proportional to the Casimir of U q (su( ✷ )) : this explains why R. Oeckl eigenv. diverge exponentially. Braided Quantum Field Theory CMP 217 (2001) 451–473. Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 2 / 23

  6. Introduction s sphere S ✷ q = SU q ( ✷ ) /U ( ✶ ) (here ✵ < q < ✶ ). A case study: the standard Podle´ L. D ˛ abrowski – A. Sitarz On S ✷ q the tadpole diagram Dirac operator on the standard Podle´ s – the only basic divergence of quantum sphere φ ✹ theory in 2D – becomes Banach Center Publ. 61 (2003), 49–58. finite at q � = ✶ . K. Schmüdgen – E. Wagner � Reason: the propagator ( D ✷ + m ✷ ) − ✶ is of trace class. Dirac operator and a twisted cyclic cocycle on the standard Podle´ s quantum sphere Regularization of QFT with J. Reine Angew. M. 574 (2004), 219–235. quantum groups symmetries: what about higher dimensional ◮ R. Oeckl spaces? Braided Quantum Field Theory CMP 217 (2001) 451–473. Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 2 / 23

  7. Outline 1 Preliminary definitions The quantum SU ( ℓ + ✶ ) group The QUEA U q (su( ℓ + ✶ )) S ✷ ℓ + ✶ and CP ℓ q q 2 K-theory and K-homology K-theory K-homology 3 Antiholomorphic forms and real spectral triples The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator 4 From GDAs to spectral triples Reality and the first order condition A family of spectral triples Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 3 / 23

  8. Outline 1 Preliminary definitions The quantum SU ( ℓ + ✶ ) group The QUEA U q (su( ℓ + ✶ )) S ✷ ℓ + ✶ and CP ℓ q q 2 K-theory and K-homology K-theory K-homology 3 Antiholomorphic forms and real spectral triples The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator 4 From GDAs to spectral triples Reality and the first order condition A family of spectral triples Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 3 / 23

  9. Outline 1 Preliminary definitions The quantum SU ( ℓ + ✶ ) group The QUEA U q (su( ℓ + ✶ )) S ✷ ℓ + ✶ and CP ℓ q q 2 K-theory and K-homology K-theory K-homology 3 Antiholomorphic forms and real spectral triples The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator 4 From GDAs to spectral triples Reality and the first order condition A family of spectral triples Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 3 / 23

  10. Outline 1 Preliminary definitions The quantum SU ( ℓ + ✶ ) group The QUEA U q (su( ℓ + ✶ )) S ✷ ℓ + ✶ and CP ℓ q q 2 K-theory and K-homology K-theory K-homology 3 Antiholomorphic forms and real spectral triples The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator 4 From GDAs to spectral triples Reality and the first order condition A family of spectral triples Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 3 / 23

  11. The quantum SU ( ℓ + ✶ ) group Let ℓ > ✶ . For G := SU ( ℓ + ✶ ) , the functions u i u i j ( g ) := g i j : G → C , , generate j a Hopf ∗ -algebra A ( G ) . As abstract ∗ -algebra it is defined by the relations � u i j u k l = u k l u i p ∈ S ℓ + ✶ (− ✶ ) || p || u ✶ p ( ✶ ) u ✷ p ( ✷ ) ✳ ✳ ✳ u ℓ + ✶ (1) j ✱ p ( ℓ + ✶ ) = ✶ ✱ where || p || = length of the permutation p ∈ S ℓ + ✶ , and with ∗ -structure j ) ∗ = (− ✶ ) j − i � ( u i p ∈ S ℓ (− ✶ ) || p || u k ✶ p ( n ✶ ) u k ✷ p ( n ✷ ) ✳ ✳ ✳ u k ℓ (2) p ( n ℓ ) where { k ✶ ✱ ✳ ✳ ✳ ✱ k ℓ } = { ✶✱ ✳ ✳ ✳ ✱ ℓ + ✶ } � { i } and { n ✶ ✱ ✳ ✳ ✳ ✱ n ℓ } = { ✶✱ ✳ ✳ ✳ ✱ ℓ + ✶ } � { j } (as ordered sets). Coproduct, counit and antipode are of ‘matrix type’ � i ) ∗ ✳ ∆ ( u i k u i k ⊗ u k ε ( u i j ) = δ i S ( u i j ) = ( u j j ) = j ✱ j ✱ Similarly coproduct, counit and antipode of A ( G q ) , ✵ < q < ✶ , are given by the same formulas above, while (1) and (2) becomes: � R ij n = u j kl ( q ) u k m u l l u i k R kl p ∈ S ℓ + ✶ (− q ) || p || u ✶ p ( ✶ ) u ✷ p ( ✷ ) ✳ ✳ ✳ u ℓ + ✶ mn ( q ) ✱ p ( ℓ + ✶ ) = ✶ ✱ j ) ∗ = (− q ) j − i � p ( n ✷ ) ✳ ✳ ✳ u k ℓ ( u i p ∈ S ℓ (− q ) || p || u k ✶ p ( n ✶ ) u k ✷ p ( n ℓ ) Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 4 / 23

  12. The quantum SU ( ℓ + ✶ ) group Let ℓ > ✶ . For G := SU ( ℓ + ✶ ) , the functions u i u i j ( g ) := g i j : G → C , , generate j a Hopf ∗ -algebra A ( G ) . As abstract ∗ -algebra it is defined by the relations � u i j u k l = u k l u i p ∈ S ℓ + ✶ (− ✶ ) || p || u ✶ p ( ✶ ) u ✷ p ( ✷ ) ✳ ✳ ✳ u ℓ + ✶ (1) j ✱ p ( ℓ + ✶ ) = ✶ ✱ where || p || = length of the permutation p ∈ S ℓ + ✶ , and with ∗ -structure j ) ∗ = (− ✶ ) j − i � ( u i p ∈ S ℓ (− ✶ ) || p || u k ✶ p ( n ✶ ) u k ✷ p ( n ✷ ) ✳ ✳ ✳ u k ℓ (2) p ( n ℓ ) where { k ✶ ✱ ✳ ✳ ✳ ✱ k ℓ } = { ✶✱ ✳ ✳ ✳ ✱ ℓ + ✶ } � { i } and { n ✶ ✱ ✳ ✳ ✳ ✱ n ℓ } = { ✶✱ ✳ ✳ ✳ ✱ ℓ + ✶ } � { j } (as ordered sets). Coproduct, counit and antipode are of ‘matrix type’ � i ) ∗ ✳ ∆ ( u i k u i k ⊗ u k ε ( u i j ) = δ i S ( u i j ) = ( u j j ) = j ✱ j ✱ Similarly coproduct, counit and antipode of A ( G q ) , ✵ < q < ✶ , are given by the same formulas above, while (1) and (2) becomes: � R ij n = u j kl ( q ) u k m u l l u i k R kl p ∈ S ℓ + ✶ (− q ) || p || u ✶ p ( ✶ ) u ✷ p ( ✷ ) ✳ ✳ ✳ u ℓ + ✶ mn ( q ) ✱ p ( ℓ + ✶ ) = ✶ ✱ j ) ∗ = (− q ) j − i � p ( n ✷ ) ✳ ✳ ✳ u k ℓ ( u i p ∈ S ℓ (− q ) || p || u k ✶ p ( n ✶ ) u k ✷ p ( n ℓ ) Geometry of quantum CP ℓ Francesco D’Andrea (UCL) September 1, 2009 4 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend