qr algorithms for eigenvalue computation of structured
play

QR-algorithms for eigenvalue computation of structured matrices. - PowerPoint PPT Presentation

QR-algorithms for eigenvalue computation of structured matrices. The case of low-rank corrections of unitary matrices L. Gemignani University of Pisa gemignan@dm.unipi.it http://www.dm.unipi.it/gemignan Cortona, 2004 p.1/19


  1. QR-algorithms for eigenvalue computation of structured matrices. The case of low-rank corrections of unitary matrices L. Gemignani University of Pisa gemignan@dm.unipi.it http://www.dm.unipi.it/˜gemignan Cortona, 2004 – p.1/19

  2. ✜ ☎ ✝ ✕ ✓ � ✔ � ✝ ☞ ✑ ✂ ✔ ✁ ✕ ✓ � � ✖ ✔ � ✝ ✚ ☞ � ✡ � ✣ ☎ ✆ ✝ ✢ ✡ � ✞ ✂ ✞ ☛ ☞ ✆ ✌ ✏ ✑ ✒ ✒ ✒ ✑ ✓ The Companion Matrix . ... . ✍✎✍✎✍✎✍ ✛✎✛✎✛✎✛ . �✗✖ ✁✄✂ . ... . . ✞✠✟ ✝✙✘ Eigenvalues of == Zeros of is upper Hessenberg MATLAB uses the shifted eigenvalue algorithm for the computation of polynomial zeros MATLAB only exploits the Hessenberg structure Cortona, 2004 – p.2/19

  3. ✣ ✡ ✤ ✧ ✝ ☛ ☞ ✢ ✣ ☎ ☞ ✮ ✬ ✫ ☞ ✖ ✬ ✬ ☎ ✮ ☎ ✯ ✢ ✦ ✪ ✤ ✢ ✡ ✆ ☞ ✓ ✦ ✤ ✧ ✝ ✆ ✤ ✢ ✣ ✤ ★ ✖ ✩ ✆ ✣ ✤ The (Shifted) QR Algorithm ☞✥✤ ☞✥✤ Classical Theory: The Hessenberg structure is invariant under ( Hessenberg Hessenberg) flops for each step of applied to a ✁✄✭ Hessenberg matrix The MATLAB implementation generally requires ✁✄✭ flops and storage for computing all the zeros ✁✄✭ Cortona, 2004 – p.3/19

  4. ✢ ✣ ✬ ☎ ✬ ☎ The Research Problem To design a eigenvalue algorithm for companion matrices which requires flops and storage per iteration ✁✄✭ ✁✄✭ Recent Contributions: 1. [ Bini, Daddi, G. ]. (To appear in ETNA) FAST but UNSTABLE 2. [ Chandrasekaran, Gu ]. (Talk at the Workshop in Banff, November 2003) www.pims.math.ca/birs/workshops/2003/03w5008 FAST but (probably) UNSTABLE The main goal: To achieve both efficiency and stability Cortona, 2004 – p.4/19

  5. ✕ ✳ ✚ ✑ ☞ ✑ ✳ ✝ ✆ ✑ ✴ ✑ ✲ ✝ ✜ ✴ ✕ ✕ ✑ ✒ ✒ ✒ ✑ ✏ ☞ ✌ ✆ ✲ The Novel Approach . ... . ✍✎✍✎✍✎✍ ✛✎✛✎✛✎✛ . ✪✱✰ ✪✱✰ . ... . . is a very special unitary Hessenberg matrix Exploit the representation of as a unitary Hessenberg plus a rank-one matrix Unitary Hessenberg matrices belong to the class of rank-structured matrices Cortona, 2004 – p.5/19

  6. ❊ ❅ ❈ ❈ ❈ ❈ ✿ ❀ ❁ ❆ ❅ ❉ ❉ ❉ ❅ ❁ ❈ ❉ ❉ ❅ ✿ ❀ ❉ ❇ ❈ ❈ ❈ ❈ ❈ ❈ ✿ ❈ ❊ ❆ ✆ ✵ ❏ ✵ ✆ ✢ ✣ ❊ ✢ ✣ ❁ ✣ ❅ ❁ ✣ ✧ ❅ ✝ ❀ ✵ ✆ ✢ ✿ ✹ ❅ ✿ ❆ ❀ ✿ ❇ ❆ ❀ Unitary Hessenberg Matrices 1. Let be unitary Hessenberg and its factorization, where has nonnegative diagonal entries 2. We have and, therefore, ❆❋❊✗● ❀❂❁❄❃ ❀❂❁❄❃ ❁❄❅ ❁❄❇ ❁❄❃ ✺✻✺✼✺✽✺✻✺✼✺✽✺✻✺✼✺✽✾ ❑✻❑✼❑✽❑✻❑✼❑✽❑✻❑✼❑✽▲ ❀✱❆ ❆■❊✗● ❁❍❅ ❁❍❇ ❁❍❅ . ... . ❀✱❆ ✶✸✷ . . ... ... . . ❊✗● ❊✗● [ Gill, Golub, Murray, Saunders , 1974] Cortona, 2004 – p.6/19

  7. ❘ ❙ ✆ ◆ ❖ P ✖ ◗ ▼ ◗ ✵ ✖ ✁ ✁ ✵ ✕ ✵ ✩ ❚ ☛ ❚ ✪ ✕ ✩ ✭ ❯ ☎ ▼ ✁ ✵ ☎ ✁ ✕ ✕ ✁ ✵ ☎ ✆ ◆ ❖ P ✖ ◗ ❘ ◗ ✵ ✖ ✁ ❱ ✵ ❙ ❚ ✪ ✕ ✩ ✭ ☛ ✕ ✩ ❚ ❯ ☎ ❱ The Rank Structure rank ✝✙✘ rank ✝✙✘ ☎❳❲ and ☎❳❲ for unitary Hessenberg Depending on some small differences in the definition and in the representation, we may have: 1. Quasiseparable matrices [ Eidelman, Gohberg ] 2. Matrices with low Hankel rank [ Dewilde, Van der Veen ] 3. Weakly semiseparable matrices [ Tyrtyshnikov ] 4. Sequentially/Hierarchically semiseparable matrices [ Chandrasekaran, Gu ] Cortona, 2004 – p.7/19

  8. ✤ ☞ ✇ ❡ ❵ ❴ ✪ ✤ ✴ ✆ s ✤ ❡ t ❫ ❜ ❛ ❵ ✞ ❛ ❵ s ❵ ❜ ✴ ♠ r t ❘ ✆ q ❥ ♠ ♣ ❣ ♦ ❫ ✓ ❦ ❥ ❖ ✐ ❤ ❢❣ ✤ ✴ ☛ ✡ ✆ ✤ ✆ ✕ ❲ ☎ ✓ ✁ ▼ ❚ ✡ ☞ ☞ ❱ ⑧ ⑨ ✣ ✢ ✴ ✤ ❩ ✤ ☞ ❨ ⑦ ✁ ✡ ✤ ☞ ✤ ✤ ❫ ✢ ✖ ✘ ✤ ☞ ✢ ❥ ✆ ✤ ☞ t ❪ ❘ ☛ ❭ ❲ ☎ s Companion Matrices Under QR Theorem 1 Let be the sequence of matrices generated by the shifted algorithm applied to the companion matrix . Then and for ☞❬✤ ☞❬✤ all Proof: From ❜❞❝ and , one ✪✱❴ gets ❜❞❝ ❧♥♠♦ Since is Hessenberg, it also holds ☞✥✤ ④⑥⑤ ①③② ✞✈✉ To conclude: Characterize the rank structure of such a matrix Cortona, 2004 – p.8/19

  9. ✭ ❥ ✮ ④ ❷ ❶ ❘ ❹ ⑤ ⑨ ✓ ⑦ ⑨ ✭ ❲ ❚ ❲ ⑨ ✪ ✮ ❷ ❶ ❘ ☛ ❲ ✕ ✞ ❘ ❹ ❻ ❻ ❻ ✖ ★ ✞ ❹ ✳ ❚ ⑩ ✆ ❘ ❸ r ❘ ✕ ✓ ✭ ❲ ❸ ✕ ✖ ✁ ❱ ✬ ☎ ⑨ ✓ ☛ ❫ ❝ ❴ ☎ ✴ ✆ ☎ ⑨ ✓ ☛ ✴ ✁ ✴ ✢ ✴ ✁ ✢ ✓ ❚ ✭ ❲ ✕ ✓ ✭ ❲ ❚ ❲ ✕ ✮ ⑨ ❷ ❶ ❘ ⑩ ❲ ✕ ✓ ✭ ✭ ✴ ✘ Unitary Rank-Structured Matrices Theorem 2 Let be a unitary matrix such that tril tril . Then, . In particular, ☎❳❲ there exist vectors , , vectors , and lower triangular matrices , , such that ✮❂❺ ✞✈✉ Proof: Compute the QR factorization of . The unitary factor is the product of ✁✄✭ rotations. The rank structure of coincides with the rank structure of Cortona, 2004 – p.9/19

  10. ❵ ❥ ✤ t ❘ ☛ ④ ⑤ ⑦ ⑤ ✪ ✕ ❲ ❚ ❲ ✭ s ✞ � ❸ s ✤ t ❘ ✘ ✖ ❼ t ❡ ❜ ❾ ✪ ✇ s ✤ ➀ s ❻ ✖ � s ✤ t ✞ ★ ✉ ✭ ✞ ✆ ➁ s ✤ t ➀ ❲ ✤ s t ✞ ✉ ✞ ✆ � ✤ ⑦ t ✞ ☛ ④ ❥ ✕ ❲ ❹ ❻ ☛ ✕ ❶ ❷ ✮ ✭ ✭ ✓ ❲ ❜ ❸ ❵ ❡ ❜ ❾ ❶ ❾ ❡ ✮ ☞ ✭ ✕ ✕ ➂ ☞ ✆ ✡ ❵ ➀ ✕ ✭ ✓ ✕ ✓ ⑩ ❷ ⑦ ❻ ❿ ❘ ✆ ⑩ ❵ ❡ ❜ ✳ ✞ ❹ s ✤ t ✞ ★ ✖ ✉ t ✭ t ✓ ⑨ ❲ ❹ s ✤ ❘ ✤ ❶ ❷ ✕ ✮ ❥ � s ✞ A Representation for Theorem 3 For each matrix generated by shifted QR ☞❽✤ algorithm applied to the companion matrix , there exist vectors , vectors and lower triangular matrices such that ✮❂❺ ①③② ④⑥⑤ Each iterate can be represented by means of ☞✥✤ parameters. Cortona, 2004 – p.10/19

  11. Cortona, 2004 – p.11/19 ☛ ❡ ➏ ➐ ❜ ☛ ❴ ❵ ❡ ➏ ➐ ❜ ❝ ➄ ❵ ❡ ➏ ➐ ❜ ☎ ★ ✖ ➃ ✁ ❨ ❵ ☛ ❵ ❹ ❨ ❸ ❵ ❡ ➏ ➐ ❜ ❿ ❩ ☛ ❨ s ❜ ✤ ★ ✖ t ✞ ❩ ☛ ✰ ❵ ❡ ➏ ➐ ⑩ ❡ ❿ ❵ ➐ ❜ ☛ ➄ ❵ ❡ ➏ ➐ ❜ ☛ ❴ ❡ ❡ ➏ ➐ ❜ ☛ ❝ ❵ ❡ ➏ ➐ ❜ ☎ ➏ ❵ ➏ ❜ ➐ ❜ ❿ ❩ ☛ ❨ ❸ ❵ ❡ ➏ ➐ ❿ ✰ ❩ ☛ ❨ ❹ s ✤ ★ ✖ t ✞ ❩ ☛ ☛ ❩ ❜ ❵ ☛ ➄ ❵ ❡ ☛ ❴ ❵ ❡ ❜ ☛ ❝ ❡ ❡ ❜ ☎ ✆ ☞ ✤ ✁ ❨ ⑩ ❵ ❡ ❜ ❿ ❜ ❵ ➐ ❵ ➃ ✁ ❨ ⑩ ❵ ❡ ❜ ❿ ❩ ☛ ❨ ❸ ❡ ✰ ❜ ❿ ❩ ☛ ❨ ❹ s ✤ t ✞ ❩ ☛ ❩ ☛ ❨ ➇ ❵ ❡ ❜ ☛ ❝ ❵ ❡ ❜ ☛ ➅ ➆ ➈ ❸ ➉ ➊ ✦ ✤ ☎ ✁ ❨ ⑩ ❵ ❡ ➏ ❴ ☛ ❜ ✤ ❵ ❡ ❜ ❿ ❩ ☛ ❨ ❡ s ❹ t ❡ ❵ ➄ ☛ ✞ ❜ ❵ ✰ ☛ ❩ The Structured QR Iteration ➋➌➎➍ The structured QR iteration takes in input is equal to and returns in output ☞✥✤ such that Let

  12. Cortona, 2004 – p.12/19 ✤ ✤ ✵ ✤ ✢ ✤ ☞ ✤ ★ ✖ ✩ ✆ ✣ ✤ ✢ ✪ ✢ ✆ ❡ ❵ ❴ ✓ ✖ ★ ✖ ✦ ★ ✤ ✵ ✝ ✧ ✤ ❫ ✆ ➐ ✓ ❡ ❜ ☛ ❵ ❡ ❜ ☎ ✆ ✵ ✤ ✢ ✤ ☞ ✤ ✦ ✖ ✵ ★ ✤ ✵ ✖ ★ ✤ ✤ ✤ ✣ ✤ ✢ ✆ ✝ ✧ ➏ ❵ ❴ ➐ ✞ ❩ ☛ ✰ ❵ ❡ ➏ ➐ ❜ ☛ ➄ ❵ ❡ ➏ ❜ ✖ ❝ ☎ ❜ ➐ ➏ ❡ ❵ ☛ ☛ ❜ ➐ ➏ ❡ ❵ ❴ t ★ ❡ ✖ ➏ ❡ ❵ ⑩ ❨ ✁ ★ ❜ ✤ ✵ ❫ ❜ ➐ ➏ ➐ ❿ ✤ ❜ s ❹ ❨ ☛ ❩ ❿ ➐ ❩ ➏ ❡ ❵ ❸ ❨ ☛ ❵ ❝ ☛ ➅ ✦ ➊ ➉ ➈ ➇ ➆ ☛ ☎ ❜ ❡ ❵ ❝ ☛ ❜ ✤ ➃ ❵ ❨ ❩ ❿ ❜ ❡ ❵ ❸ ☛ ✁ ❩ ❿ ❜ ❡ ❵ ⑩ ❨ ❡ ❴ ❨ ❩ ❜ ❡ ❵ ❸ ❨ ☛ ❿ ❩ ❜ ❡ ❵ ⑩ ❨ ✁ ❿ ☛ ☛ ❵ ❡ ❵ ➄ ☛ ❜ ❡ ✰ ❨ ☛ ❩ ✞ t ✤ s ❹ t ☛ ❹ ☛ ❿ ❜ ❡ ❵ ❸ ❨ ❩ ☛ ❿ ❜ ❡ ❵ ⑩ s ❩ ❨ ➑ ❵ ✤ s ➄ ☛ ❜ ❡ ✰ ❹ ☛ ❩ ✞ t ✤ s ✁ ❨ ✤ ☛ ✤ t ✞ ❩ ☛ ✰ ❵ ❡ ❜ ☛ ➄ ☞ ❡ ❜ ❵ ❴ ❵ ❡ ❜ ✆ ☎ ❜ ☛ ❝ ❡ ❵ A Fast and Stable Structured Iteration 3. (Compression Phase) Compute a QR factorization of ➋➌➎➍ ❜❞➒ ☞✥✤ : 2. (Expansion Phase) Compute , such that 1. Compute OUTPUT: INPUT: (a) (b)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend