hamiltonian and symplectic lanczos processes david s
play

Hamiltonian and Symplectic Lanczos Processes David S. Watkins - PDF document

Hamiltonian and Symplectic Lanczos Processes David S. Watkins Department of Mathematics Washington State University Pullman, WA 99164-3113 U.S.A. PIMS Workshop, Vancouver BC August 2003 Collaborators: V. Mehrmann, T. Apel, P. Benner, H.


  1. Hamiltonian and Symplectic Lanczos Processes David S. Watkins Department of Mathematics Washington State University Pullman, WA 99164-3113 U.S.A. PIMS Workshop, Vancouver BC August 2003 Collaborators: V. Mehrmann, T. Apel, P. Benner, H. Faßbender, . . . 1

  2. Problem: Linear Elasticity • ( λ 2 M + λG + K ) v = 0 M T = M > 0 G T = − G K T = K ≤ 0 • quadratic eigenvalue problem • large, sparse (finite elements) • Find few eigenvalues nearest imaginary axis (and corresponding eigenvectors). 2

  3. Problem: Optimal Control � BB T � � � 0 E A • − λ C T C − A T E T 0 (large and sparse) • Hamiltonian/skew-Hamiltonian � � 0 I • multiply by J = − I 0 � C T C − A T � � � E T 0 • − λ − BB T − E 0 − A • symmetric/skew-symmetric 3

  4. Hamiltonian Structure • Our matrices are real. • λ , λ , − λ , − λ occur together. • seen also in Hamiltonian matrices 4

  5. Hamiltonian Matrices • H ∈ R 2 n × 2 n � � 0 I ∈ R 2 n × 2 n • J = 0 − I • H is Hamiltonian iff JH is symmetric. � � A K • H = , − A T N where K = K T and N = N T 5

  6. Linearization • λ 2 Mv + λGv + Kv = 0 • w = λv , Mw = λMv � � � � � � � � 0 − K v G M v = 0 • − λ 0 0 − M w − M w • Ax − λNx = 0 • symmetric/skew-symmetric 6

  7. Reduction to Hamiltonian Matrix • A − λN (symmetric/skew-symmetric) � � �� 0 I • N = R T JR J = − I 0 sometimes easy, always possible • Transform: A − λR T JR R − T AR − 1 − λJ J T R − T AR − 1 − λI • H = J T R − T AR − 1 is Hamiltonian. 7

  8. Example � � G M • N = 0 − M − 1 � � � � � � 0 I 0 I 2 G I • N = R T JR = 1 − I 0 0 2 G M M • J T R − T AR − 1 = H � � � M − 1 � � � 0 0 I I 0 = − 1 − 1 0 − K 2 G I 2 G I 8

  9. Sparse Representation of H • Krylov subspace methods • We just need to apply the operator. ( M = LL T ) M − 1 � � � � � � 0 0 I I 0 = H − 1 − 1 − K 0 2 G I 2 G I � � � ( − K ) − 1 � � � 0 0 I I 0 H − 1 = 1 1 0 M 2 G I 2 G I 9

  10. Exploitable Structures • Hamiltonian H − 1 H − 1 ( H − τI ) − 1 ( H + τI ) − 1 • skew-Hamiltonian H − 2 ( H − τI ) − 1 ( H + τI ) − 1 • symplectic ( H − τI ) − 1 ( H + τI ) τ = target shift Note: ( H − τI ) − 1 has none of these structures. 10

  11. Unsymmetric Lanczos Process • Standard unsymmetric Lanczos effects a (partial) similarity transformation   ❅ ❅ ❅ ❅ ❅ � � � � · · · = · · · ❅ A u 1 u n u 1 u n  ❅ ❅  ❅ ❅ ❅   ❅ ❅ ❅ ❅ ❅   ❅ ❅ ❅ ❅ ❅ U − 1 AU = ❅  ❅ ❅  ❅ ❅ ❅   ❅ ❅ ❅ ❅ ❅ • partial similarity transformation: � � � � � � ❅ ❅ ❅ = A · · · · · · u 1 u k u 1 u k ❅ ❅ ❅ ❅ ❅ ❅ + u k +1 β k e T k 11

  12. • short Lanczos runs (breakdowns!!, no look-ahead) � � � � � � ❅ ❅ ❅ · · · = · · · A u 1 u k u 1 u k ❅ ❅ ❅ ❅ ❅ ❅ + u k +1 β k e T k � � ❅ ❅ ❅ • Get eigenvalues of ❅ ❅ ❅ ❅ ❅ ❅ • Restart (implicitly) IRA (Sorensen 1991), ARPACK Restart Lanczos with HR (Grimme/Sorensen/Van Dooren 1996) 12

  13. Structured Lanczos Methods • Similarity transformation: S − 1 AS = ˆ A • S symplectic ⇒ structure preserved ◦ symplectic (Lie group) ◦ Hamiltonian (Lie algebra) ◦ skew-Hamiltonian (Jordan algebra) • Conclusion: A “Lanczos” process that builds a symplectic similarity transformation will preserve structure. Vectors produced should be columns of a symplectic matrix. 13

  14. Symplectic Matrices • S ∈ R 2 n × 2 n � � �� 0 I • S T JS = J J = 0 − I � � • S = U V � U T � � � 0 I � � • = J U V V T − I 0 • U T JU = 0, V T JV = 0, U T JV = I • Subspaces are isotropic. 14

  15. Isotropic Subspaces • y T Jx = 0 for all x , y ∈ U � � • U = · · · u 1 u k • U T JU = 0 • Structured methods build isotropic subspaces. 15

  16. Skew-Hamiltonian Case Theorem: B skew Hamiltonian, x � = 0 ⇒ span { x, Bx, . . . , B j − 1 x } is isotropic. • Conclusion: Krylov subspace methods preserve skew-Hamiltonian structure automatically. • Examples: Arnoldi, unsymmetric Lanczos • exact vs. floating-point arithmetic 16

  17. Skew-Hamiltonian Arnoldi Process • Isotropic Arnoldi process j j � � ˜ q j +1 = Bq j − q i h ij − Jq i t ij i =1 i =1 • produces isotropic subspaces: Jq 1 , . . . , Jq k are orthogonal to q 1 , . . . , q k . • Theory t ij = 0 • Practice t ij = ǫ (roundoff) • Enforcement of isotropy is crucial. • Consequence: get each eigenvalue only once. 17

  18. Example • Method: Implicitly Restarted Arnoldi (effective combination of Arnoldi and subspace iteration) • Toy problem ( n = 64); asking for 8 eigenvalues (right half-plane). • Target τ = i (not particularly good) • After 12 Arnoldi steps (no restart) . . . 18

  19. • After one restart (12 more Arnoldi steps) • Errors: 10 − 14 , 10 − 7 , 10 − 6 , 10 − 2 • After 7 iterations (restarts) algorithm stops with 8 eigenvalues correct to ten decimal places. • Residuals: � ( λ 2 M + λG + K ) v � ≤ 10 − 12 ( � v � = 1) 19

  20. Further Experience • Fortran/C code • n ≈ 2 × 10 5 • Disadvantage: Eigenvectors cost extra. (eigenvectors of H 2 vs. H ) • We haven’t done skew-Hamiltonian Lanczos. 20

  21. Hamiltonian Case • Bunse-Gerstner/Mehrmann 1986:   ❅ ❅ ❅ ❅ � � ❅ ❅ ❅ ❅ E T ❅ ❅ ❅ ❅ S − 1 HS = =     D − E ❅ ❅   ❅ ❅ ❅ ❅ • Further condensation: E = 0, D = diag {± 1 · · · ± 1 } . � � • S = U V � � � 0 T � � � = • H U V U V 0 D 21

  22. Condensed Hamiltonian Lanczos Process   ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ � � � �   • H = U V U V   ❅   ❅ ❅ � � � � U = · · · V = · · · u 1 u 2 v 1 v 2 • Hu k = v k d k Hv k = u k − 1 b k − 1 + u k a k + u k +1 b k • u k +1 b k = Hv k − u k a k − u k − 1 b k − 1 v k +1 d k +1 = Hu k +1 • Coefficients are chosen so that � � S = is symplectic. U V • Collect coefficients. 22

  23. Equivalence • H 2 is skew-Hamiltonian. • Condensed Hamiltonian Lanczos applied to H is theoretically equivalent to ordinary Lanczos applied to H 2 . • Hamiltonian algorithm costs half as many matrix-vector multiplies. 23

  24. Isotropy � � 0 I • S T JS = J , J = 0 − I � U T � � � 0 I � � • = J U V V T − I 0 • U T JU = 0, (isotropic subspaces) V T JV = 0, • In (floating-point) practice, isotropy must be enforced by J -reorthogonalization. • All vectors must be retained. • short Lanczos runs, restarts 24

  25. Implicitly Restarted Hamiltonian Lanczos Process • use SR , not QR (Benner/Fassbender 1997) • In condensed case, SR = HR (Benner/Fassbender/W 1998) • Use of HR yields significant simplification. 25

  26. Symplectic Case Structure • Eigenvalues of S appear in quartets µ , µ − 1 , µ , µ − 1 . • Symplectic Lanczos process must extract these simultaneously. • This is accomplished by using both S and S − 1 . • S − 1 = − JS T J 26

  27. Symplectic Similarity • symplectic butterfly form: (Banse/Bunse-Gerstner 1994)   ❅ ❅ ❅ ❅ � � ❅ ❅ ❅ ❅ D 1 T 1 ❅ ❅ ❅ ❅ W − 1 SW =   =   D 2 T 2 ❅ ❅ ❅ ❅   ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ • Further condensation: D 1 = 0, D 2 = diag {± 1 · · · ± 1 } , T 1 = − D 2 , . . . � � • W = U V � � � 0 − D � � � = • S U V U V D DT 27

  28. Condensed Symplectic Lanczos Process   ❅ ❅ ❅   ❅ � � � �   • S = U V U V   ❅ ❅ ❅   ❅ ❅ ❅ ❅   ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ • Su k = v k d k Sv k = − u k d k + v k − 1 ˜ a k + v k +1 ˜ b k − 1 + v k ˜ b k • v k +1 ˜ a k − v k − 1 ˜ = Sv k − v k ˜ b k − 1 + u k d k b k u k +1 d k +1 = S − 1 v k +1 • Coefficients are chosen so that � � is symplectic. U V • Collect coefficients. 28

  29. Equivalence • S + S − 1 is skew-Hamiltonian. • Condensed symplectic Lanczos applied to S is theoretically equivalent to ordinary Lanc- zos applied to S + S − 1 . • Symplectic algorithm costs half as many matrix-vector multiplies. 29

  30. Isotropy (rerun) � U T � � � 0 I � � • = J U V V T − I 0 • U T JU = 0, (isotropic subspaces) V T JV = 0, • In (floating-point) practice, isotropy must be enforced by J -reorthogonalization. • All vectors must be retained. • short Lanczos runs, restarts 30

  31. Implicitly Restarted Symplectic Lanczos Process • use symplectic SR , not QR • In condensed case, SR = HR (Benner/Fassbender/W 1998) • Use of HR yields significant simplification. 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend