pulsar glitches
play

PULSAR GLITCHES spin frequency time Danai Antonopoulou Centrum - PowerPoint PPT Presentation

PULSAR GLITCHES spin frequency time Danai Antonopoulou Centrum Astronomiczne im. Miko aja Kopernika What are pulsar glitches? 11.197 fast spin-up 11.1947 spin frequency (Hz) 10 3 100 Hz 11.1946 11.196 51520


  1. PULSAR GLITCHES spin frequency time Danai Antonopoulou Centrum Astronomiczne im. Miko ł aja Kopernika

  2. What are pulsar glitches? 11.197 ★ fast spin-up 11.1947 spin frequency ν (Hz) 10 − 3 � ∆ ν � 100 µ Hz 11.1946 11.196 51520 51540 51560 51580 51600 ★ increase in spin-down 11.195 ∆ ˙ ν < 0 11.194 ν (10 − 15 Hz/s) -15550 ★ slow relaxation -15600 (~weeks-years) spin-down rate ˙ -15650 superfluid dynamics -15700 50000 50500 51000 51500 52000 MJD (days) Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  3. What could be causing them? ★ Superfluid vortices interact/pin to crust lattice (and to core superconducting flux tubes) ★ Pinning holds up to a critical lag ω cr = ( Ω s − Ω c ) max Figure by Nils Andersson Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  4. What could be causing them? Z ★ Two weakly-coupled components I c Ω c + Ω s ( r ) dI s = L tot ★ Vortices collectively unpin and rearrange sudden exchange of angular momentum Δν { spin frequency time Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  5. . What could be causing them? Z ★ Post-glitch relaxation I c ˙ ˙ Ω c ( t ) + Ω s ( r, t ) dI s = N ext ˙ Ω s depends on lag ω (r,t), nature of interactions, T , ... ★ At a glitch, ω reduces and so does ˙ Ω s spin-down recovers on local characteristic timescales { spin down Δν time Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  6. Glitch statistics ★ Melatos et al. 2008: power-law size distributions and exponential distributions of waiting times ★ Evidence for scale-invariance glitches as vortex avalanches events Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  7. Glitch size distribution data from http://www.jb.man.ac.uk/pulsar/glitches.html, thanks to Ben Shaw Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  8. Glitch size distribution data from http://www.jb.man.ac.uk/pulsar/glitches.html, thanks to Ben Shaw Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  9. Glitch size distribution data from http://www.jb.man.ac.uk/pulsar/glitches.html, thanks to Ben Shaw Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  10. Glitch size distribution pulsar # glitches size distribution J0537-6910 45 normal J0835-4510 (Vela) 19 normal, mixture J1902+0615 6 mixture, normal J1048-5832 6 mixture J2229+6114 6 mixture J1740-3015 35 Weibull, Pareto, lognormal J0534+2200 (Crab) 26 Pareto, Weibull, lognormal J1341-6220 23 Weibull, Pareto, lognormal J0631+1036 15 Pareto, Weibull, lognormal J1801-2304 13 Weibull, mixture J0742-2822 8 Weibull, Pareto, lognormal J1413-6141 7 Weibull, Pareto J0358+5413 6 Weibull, Pareto, lognormal J1825-0935 6 Pareto, Weibull, lognormal J1826-1334 6 Weibull, Pareto J1952+3252 6 Pareto Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  11. Glitch size distribution ★ Distribution type does not appear to correlate with basic pulsar parameters 10 -14 10 -13 10 -12 10 -11 10 -10 0 10 20 30 40 50 60 spin frequency (Hz) spin down rate (Hz/s) 10 6 10 12 10 13 1000 10000 100000 age (years) dipole B-field (Gauss) ★ Individual, well-studied, cases: J0534+2200 ( Crab ) J0537-6910 Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  12. Glitch size distribution ★ Distribution type does not appear to correlate with basic pulsar parameters Crab Crab 0537 0537 10 -14 10 -13 10 -12 10 -11 10 -10 0 10 20 30 40 50 60 spin frequency (Hz) spin down rate (Hz/s) Crab 0537 Crab 0537 10 6 10 12 10 13 1000 10000 100000 age (years) dipole B-field (Gauss) ★ Individual, well-studied, cases: J0534+2200 ( Crab ) J0537-6910 Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  13. Crab vs J0537: Glitch sizes Crab pulsar 1 ★ Power-law size distribution, with lower Espinoza et al. 2014 0.8 cut-off single vortex unpinning ∆ ν min >> 0.6 P (s ≤ Δ ν ) ★ Trigger: local avalanches involving 0.4 Crab pulsar billions of vortices (and crustquakes?) 
 0.2 Power law Lognormal Antonopoulou et al. 2018 0 0.1 1 10 Δ ν ( μ Hz) J0537-6910 ★ Normal distribution, large glitches ★ Trigger: Threshold -regulated process depleting almost all angular momentum reservoir Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  14. Crab vs J0537: Interglitch time intervals Crab pulsar J0537-6910 -15 10 Δ ν g ( μ Hz ) (e) 40 1 30 Δν ( μ Hz) 0.1 25 35 45 20 15 0.01 -0.020 5 10 Hz s -1 ) -3.70 40000 42000 44000 46000 48000 50000 52000 54000 56000 0 MJD (Days) 52000 53000 54000 55000 56000 MJD ★ Unique to J0537: Strong correlation ( Δν , Δ t post ) time to the next glitch (days) 300 Antonopoulou et al. 2018 250 200 150 100 50 0 0 10 20 30 40 50 glitch magnitude ( µ Hz) Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  15. Crab vs J0537: Spin down evolution Crab pulsar Year 1970 1980 1990 2000 2010 ★ Glitches have little impact on the -3.70 (a) -3.72 ν (10 -10 Hz s -1 ) long-term behaviour -3.74 -3.76 -3.78 -3.80 ★ Overall braking index n~2.5, -3.82 • -3.84 reduces to n~2.3 during period of -3.86 Lyne et al. 2014 high glitch activity (b) 0 -0.005 δ ν (10 -10 Hz s -1 ) spin down -0.010 -0.015 • time ★ Between glitches the braking index -0.020 is close to its long-term value -0.025 40000 42000 44000 46000 48000 50000 52000 54000 56000 MJD (Days) Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  16. Crab vs J0537: Spin down evolution J0537-6910 ★ Glitches have large impact on the long-term behaviour J0537-6910 -199100 ★ Long-term n=-1.2 -199200 ν [10 − 15 Hz / s] -199300 ★ Between glitches n~20 -199400 much bigger than ˙ -199500 its long-term value Antonopoulou et al. 2018 -199600 52000 53000 54000 55000 56000 MJD [days] -15500 ★ Similar to Vela pulsar: ν [10 − 15 Hz / s] -15600 -1 ★ Long-term n~1.7 -15700 -1 Vela ★ Much bigger between ˙ -15800 -1 glitches (n>40) 40000 42000 44000 46000 48000 50000 52000 54000 MJD Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  17. Glitches diversity in other pulsars Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

  18. Can one model fit all? ★ Dominance of local or global avalanches depending on critical lag profile (pinning strength, homogeneity, ...), driving rate (spin-down) and temperature ★ Older, lower-B, pulsars (4 objects) tend to have regular large glitches and inter glitch n >> long-term n ★ Other effects to be accounted for: } magnetic field role e.g. magnetars relation to magnetosphere crustal failure thermal effects Antonopoulou Danai POLNS18 Warsaw, 26/03/2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend