pseudo measurement simulations and bootstrap for the
play

Pseudo-measurement simulations and bootstrap for the experimental - PowerPoint PPT Presentation

Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification S. Varet 1 . Dossantos-Uzarralde 1 N. Vayatis 2 E. Bauge 1 P 1 CEA-DAM-DIF 2 ENS Cachan WONDER-2012 September


  1. Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification S. Varet 1 . Dossantos-Uzarralde 1 N. Vayatis 2 E. Bauge 1 P 1 CEA-DAM-DIF 2 ENS Cachan WONDER-2012 September 25-28 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 1 / 29

  2. Motivations: experimental cross-sections 25 55 Mn n2n cross section 1.1 Available informations: 1 0.9 the measurements n2n cross section 0.8 their uncertainty 0.7 0.6 EXFOR data 0.5 0.4 12 13 14 15 16 17 18 19 20 Energy (MeV) → covariance matrix estimation and its inverse Example Evaluated cross sections uncertainty: generalized χ 2 ([VDUVB11]) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 2 / 29

  3. Motivations: experimental cross-sections covariances HOW? Empirical estimator: only one measurement per energy � n cov ( F i , F j ) ≈ 1 ( F ( k ) − ¯ F i )( F ( k ) − ¯ F j ) i j n k = 1 Conventionnal approach: propagation error formula [IBC04],[Kes08] S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  4. Motivations: experimental cross-sections covariances HOW? Empirical estimator: only one measurement per energy Conventionnal approach: propagation error formula [IBC04],[Kes08] � ∂ F i .∂ F j cov ( F i , F j ) ≈ . cov ( q k , q l ) ∂ q k ∂ q l param. exp. ( q k , q l ) ex. : fission fragments yield, recoil protons yield, → the needed informations are rarely available → linearity assumption S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  5. Motivations: experimental cross-sections covariances HOW? Empirical estimator: only one measurement per energy Conventionnal approach: propagation error formula [IBC04],[Kes08] QUALITY OF THE COVARIANCES ESTIMATION? S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  6. Outline Notations 1 Experimental covariances estimation: new method 2 Validation 3 Quality measure of the obtained estimation 4 Conclusion 5 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 4 / 29

  7. Notations Outline Notations 1 Experimental covariances estimation: new method 2 Validation 3 Quality measure of the obtained estimation 4 Conclusion 5 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 5 / 29

  8. Notations Notations Schematic representation of the experimental cross sections S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 6 / 29

  9. Experimental covariances estimation: new method Outline Notations 1 Experimental covariances estimation: new method 2 Validation 3 Quality measure of the obtained estimation 4 Conclusion 5 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 7 / 29

  10. Experimental covariances estimation: new method Pseudo-measurements method Given the available information (the measurements and their uncertainty) The idea: Repeat the available information in order to artificially increase the number of measurements The method: Construction of a regression model h (SVM, polynomial,...) 1 Generation of r pseudo-measurements ( S ( 1 ) , ..., S ( r ) ) : gaussian 2 noise centered on h : N (( h ( E 1 ) , ..., h ( E N )) t , diag ( σ 1 , ..., σ N )) � Σ F : empirical estimator of Σ F 3 Diagonal terms are imposed 4 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 8 / 29

  11. Experimental covariances estimation: new method Pseudo-measurements method Given the available information (the measurements and their uncertainty) The idea: Repeat the available information in order to artificially increase the number of measurements The method: Construction of a regression model h (SVM, polynomial,...) 1 Generation of r pseudo-measurements ( S ( 1 ) , ..., S ( r ) ) : gaussian 2 noise centered on h : N (( h ( E 1 ) , ..., h ( E N )) t , diag ( σ 1 , ..., σ N )) � Σ F : empirical estimator of Σ F 3 Diagonal terms are imposed 4 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 8 / 29

  12. Experimental covariances estimation: new method The SVM regression principle [SS04], [VGS97] Linear case: Assume F i = h ( E i ) = w . E i + b with E i ∈ R s and w ∈ R s (here s = 1 ). The svm regression model is a solution of the constraint optimisation problem: 1 2 � w � 2 flat function: minimize � F i − ( w . E i + b ) ≤ ε errors lower than ε : subject to ( w . E i + b ) − F i ≤ ε Non linear case: Find a map of the initial space of energy, (into a higher dimensionnal space) such as the problem becomes linear in the new space (mapping via Kernel). S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 9 / 29

  13. Experimental covariances estimation: new method Pseudo-measurements method Given the available information (the measurements and their uncertainty) The idea: Repeat the available information in order to artificially increase the number of measurements The method: Construction of a regression model h (SVM, polynomial,...) 1 Generation of r pseudo-measurements ( S ( 1 ) , ..., S ( r ) ) : gaussian 2 noise centered on h : N (( h ( E 1 ) , ..., h ( E N )) t , diag ( σ 1 , ..., σ N )) � Σ F : empirical estimator of Σ F 3 Diagonal terms are imposed 4 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 10 / 29

  14. Experimental covariances estimation: new method Pseudo-measurements method Σ F term at the i th line and j th column, for i and j ∈ { 1 , ..., N } : � ( F ( k ) − h ( E i ))( F ( k ) n � − h ( E j )) C ij = σ i σ j i j � � � n + r � V i V j k = 1 ( S ( k ) − h ( E i ))( S ( k ) � r − h ( E j )) + σ i σ j i j � � � n + r � V i V j k = 1 and C ii = σ 2 i where n = 1 . S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 11 / 29

  15. Experimental covariances estimation: new method Number r of pseudo-measurements? Constraint on r 0 r too large: r too small: � � Σ F diagonal matrix Σ F non invertible r = 0 � � Σ F invertible Σ F non invertible r such as � no pseudo-measurements Σ F invertible S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 12 / 29

  16. Validation Outline Notations 1 Experimental covariances estimation: new method 2 Validation 3 Quality measure of the obtained estimation 4 Conclusion 5 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 13 / 29

  17. Validation Toy model Goal: Compare � Σ F with Σ F : real case: Σ F is unknown ⇒ we build a toy model with Σ F fixed ⇒ numerical validation   Toy Model: M 1   . M := .  ( ≡ F ) ֒ → N N ( m M , Σ M )  . M N number of M realisations n = 1 , N = 5 0 1 0 1 1 . 25 9 . 49 − 1 . 20 2 . 39 − 0 . 03 0 . 07 B C B C − 3 . 49 − 1 . 20 3 . 64 − 3 . 21 0 . 03 − 0 . 09 B C B C B C B C θ = − 0 . 67 Σ F = 2 . 39 − 3 . 21 5 . 27 0 . 48 0 . 10 B C B C @ A @ A − 7 . 41 − 0 . 03 0 . 03 0 . 48 6 . 79 0 . 01 − 2 . 29 0 . 07 − 0 . 09 0 . 10 0 . 01 5 . 72 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 14 / 29

  18. Validation Pseudo-measurements with the ’Toy Model’ SVM regression on the toy model 10 5 Measurements (ex : Xs) 0 −5 −10 m M −15 −20 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Variable (ex : energy) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  19. Validation Pseudo-measurements with the ’Toy Model’ SVM regression on the toy model 10 5 Measurement (ex : Xs) 0 −5 −10 m M Toy measurement −15 −20 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Variable (ex : energy) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  20. Validation Pseudo-measurements with the ’Toy Model’ SVM regression on the toy model 10 5 Measurement (ex : Xs) 0 −5 SVM regression −10 m M −15 Toy measurement −20 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Variable (ex : energy) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  21. Validation Pseudo-measurements with the ’Toy Model’ SVM regression on the toy model 10 5 Measurements (ex : Xs) 0 −5 SVM regression −10 m M Toy measurement −15 r=1 pseudo−measurement −20 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Variable (ex : energy) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  22. Validation Pseudo-measurements with the ’Toy Model’ N=5, r = 1 sample of pseudo-measurements 1 1 8 6 2 2 4 3 3 2 4 4 0 −2 5 5 1 2 3 4 5 1 2 3 4 5 Real matrix Estimation S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  23. Validation 55 25 Mn : (n,2n) cross section Values extracted from [MTN11] N=11, r=1, � Σ F is a 11x11 matrix 1.1 SVM model Experimental cross sections 1 1 Pseudo−measurements 0.8 2 0.9 0.6 3 Cross section (mb) 4 0.4 0.8 5 6 0.2 0.7 7 0 8 9 0.6 −0.2 10 −0.4 11 0.5 1 2 3 4 5 6 7 8 9 10 11 0.4 12 13 14 15 16 17 18 19 20 Energy (eV) S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 16 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend