pseudo h type algebras integer structure constants and
play

Pseudo H -type algebras, integer structure constants and - PowerPoint PPT Presentation

Pseudo H -type algebras, integer structure constants and isomorphisms. Irina Markina University of Bergen, Norway joint work with A. Korolko, M. Godoy, K. Furutani, A. Vasiliev, C. Autenried Pseudo H -type algebras, integer structure constants


  1. Pseudo H -type algebras, integer structure constants and isomorphisms. Irina Markina University of Bergen, Norway joint work with A. Korolko, M. Godoy, K. Furutani, A. Vasiliev, C. Autenried Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 1/27

  2. Heisenberg algebra H 1 = span { X, Y } ⊕ span { Z } = V ⊕ Z , [ X, Y ] = Z is unique non vanishing commutator [ X, Y ] = Z Let ( · , · ) be an inner product such that X, Y, Z are orthonormal. Define J : Z × V → V an operator ( J ( z, v ) , u ) V := ( z, [ v, u ]) Z = ( z, ad v u ) Z . for any z ∈ Z and u, v ∈ V . Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 2/27

  3. Properties of J ( J ( z, v ) , u ) V := ( z, [ v, u ]) Z = ( z, ad v u ) Z . • J : Z × V → V is a bilinear map • J is skew symmetric with respect to ( · , · ) V : ( J ( z, v ) , u ) V = − ( v, J ( z, u )) V . • J ( · , v ) = ad ∗ v ( · ) , • J ( · , v ) = ad − 1 v ( · ) , as ker(ad v ) ⊥ , ( · , · ) V ad v : � � ↔ ( Z , ( · , · ) Z ) ker(ad v ) ⊥ , ( · , · ) ker(ad v ) ⊥ � J ( · , v ): ( Z , ( · , · ) Z ) ↔ � Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 3/27

  4. Properties of J The operators ad v : � ker(ad v ) ⊥ , ( · , · ) ker(ad v ) ⊥ � ↔ ( Z , ( · , · ) Z ) J ( · , v ): ( Z , ( · , · ) Z ) ↔ � ker(ad v ) ⊥ , ( · , · ) ker(ad v ) ⊥ � is an isometry for ( v, v ) V = 1 ( J ( z, v ) , J ( z, v )) V = ( z, z ) Z ( v, v ) V or ( J ( z, v � v � ) , J ( z, v � v � )) V = ( z, z ) Z Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 4/27

  5. Heisenberg type algebra Theorem, A. Kaplan, 1981 A two step nilpotent Lie algebra � � n = Z ⊕ ⊥ V, [ · , · ] , ( · , · ) = ( · , · ) Z + ( · , · ) V is an H-type Lie algebra if the operator ( J ( z, v ) , v ′ ) V =: ( z, [ v, v ′ ]) Z = ( z, ad v v ′ ) Z is an isometry for any unit length vector v ∈ V . Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 5/27

  6. Heisenberg type algebra Theorem, A. Kaplan, 1981 A two step nilpotent Lie algebra � � n = Z ⊕ ⊥ V, [ · , · ] , ( · , · ) = ( · , · ) Z + ( · , · ) V is an H-type Lie algebra if the operator ( J ( z, v ) , v ′ ) V =: ( z, [ v, v ′ ]) Z = ( z, ad v v ′ ) Z is an isometry for any unit length vector v ∈ V . An H-type algebra n exists iff J 2 ( z, · ) = − ( z, z ) Z Id V . Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 5/27

  7. Relation to Clifford algebras � J ( z, v ) , J ( z, v ′ ) � V = � z, z � Z � v, v ′ � V . (1) � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V (2) � J 2 ( z, v ) , v ′ � V = −� J ( z, v ) , J ( z, v ′ ) � V = −� z, z � Z � v, v ′ � V � ( −� z, z � Z ) v, v ′ � V ⇒ = J 2 ( z, v ) = −� z, z � Z v J 2 ( z, · ) = −� z, z � Z Id V or (3) ⇒ (1) + (2) = (3) Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 6/27

  8. Relation to Clifford algebras � J ( z, v ) , J ( z, v ′ ) � V = � z, z � Z � v, v ′ � V . (1) � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V (2) J 2 ( z, · ) = −� z, z � Z Id V (3) The first property is the composition of quadratic forms and The last property is defining property for Clifford algebra. Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 7/27

  9. Clifford algebra Let ( W, �· , ·� W ) be a scalar product space. The Clifford algebra Cl(( W, �· , ·� W )) is an associative algebra with unit I , product ⊗ , factorized by the relation � � w ⊗ w = −� w, w � W I or w ⊗ u + u ⊗ w = − 2 � w, u � W I Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 8/27

  10. Clifford algebra Let ( W, �· , ·� W ) be a scalar product space. The Clifford algebra Cl(( W, �· , ·� W )) is an associative algebra with unit I , product ⊗ , factorized by the relation � � w ⊗ w = −� w, w � W I or w ⊗ u + u ⊗ w = − 2 � w, u � W I If ( w 1 , . . . , w n ) is an orthonormal basis of W w k ⊗ w k = −� w k , w k � W I , w k ⊗ w l = − w l ⊗ w k , k � = l Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 8/27

  11. Clifford module The algebra homomorphism J : J : Cl( W, �· , ·� W ) → End( V ) is called representation and ( V, J ) is Clifford module for Cl( W, �· , ·� W ) w �→ J ( w, · ): V → V J ◦ J = J 2 ( w, · ): V → V w ⊗ w �→ −� w, w � W I �→ −� w, w � W Id V J 2 ( w, · ) = −� w, w � W Id V = ⇒ Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 9/27

  12. List of Clifford algebras Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 10/27

  13. Relation to Clifford module � J ( z, v ) , J ( z, v ′ ) � V = � z, z � Z � v, v ′ � V . (1) � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V (2) J 2 ( z, · ) = −� z, z � Z Id V (3) Question: given (3) can we construct a general H -type algebra? ( N = V ⊕ ⊥ Z , [ · , · ] , �· , ·� ) Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 11/27

  14. Relation to Clifford module � J ( z, v ) , J ( z, v ′ ) � V = � z, z � Z � v, v ′ � V . (1) � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V (2) J 2 ( z, · ) = −� z, z � Z Id V (3) Question: given (3) can we construct a general H -type algebra? ( N = V ⊕ ⊥ Z , [ · , · ] , �· , ·� ) Answer: yes if we add (1) or (2) Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 11/27

  15. Pseudo H -type algebras Let ( N = V ⊕ ⊥ Z , [ · , · ] , �· , ·� ) be a two step nilpotent Lie algebra such that ( Z , �· , ·� Z ) , ( V, �· , ·� V ) are non degenerate The Lie algebra N is a called pseudo H -type Lie algebra if the operator � J ( z, v ) , v ′ � V =: � z, [ v, v ′ ] � Z = � z, ad v v ′ � Z satisfies � J ( z, v ) , J ( z, v ′ ) � V = � z, z � Z � v, v ′ � V . Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 12/27

  16. Pseudo H -type algebras All pseudo H -type algebras arises from the Clifford algebras Cl( Z , � . , � Z ) : If there is a representation J 2 ( z, · ) = −� z, z � Z Id V J : Z → End( V ) such that V admits a scalar product � . , � V satisfying � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V then � � n = V ⊕ ⊥ Z , [ . , . ] , � . , � V + � . , � Z is the pseudo H -type Lie algebra with the Lie bracket � J ( z, v ) , v ′ � V = � z, [ v, v ′ ] � Z Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 13/27

  17. Admissible Clifford module When a Clifford Cl( Z , �· , ·� Z ) -module V J 2 ( z, · ) = −� z, z � Z Id V admits a scalar product �· , ·� V such that � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V ? Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 14/27

  18. Admissible Clifford module When a Clifford Cl( Z , �· , ·� Z ) -module V J 2 ( z, · ) = −� z, z � Z Id V admits a scalar product �· , ·� V such that � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V ? Always! if �· , ·� Z is positive definite with �· , ·� V positive definite ⇒ = Classical H -type algebras Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 14/27

  19. Existence of adm. module Given a Cl( Z , �· , ·� Z ) -module V , then V or V ⊕ V can be equipped with a scalar product satisfying � J ( z, v ) , v ′ � V = −� v, J ( z, v ′ ) � V , for all z ∈ Z (2) P . Ciatti, 2000. Moreover or ( V, �· , ·� V ) ( V ⊕ V, �· , ·� V ⊕ V ) is a neutral space Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 15/27

  20. List of pseudo H -type algebras Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 16/27

  21. Classical H -type algebras For classical H -type algebras ( n = V ⊕ ⊥ Z , [ · , · ] , ( · , · )) there is a basis V = span { v α } and Z = span { z j } such that � C j C j [ v α , v β ] = αβ ∈ Z . αβ z j , j G. Crandall, J. Dodziuk, Integral structures on H-type Lie algebras , J. Lie Theory 12 (2002), no. 1, 69-79. P . Eberlein, Geometry of 2-step nilpotent Lie groups, Modern dynamical systems and applications , Cambridge Univ. Press, Cambridge (2004), 67–101. A. I. Mal´ cev, On a class of homogeneous spaces , Amer. Math. Soc. Translation 39, 1951; Izv. Akad. Nauk USSR, Ser. Mat. 13 (1949), 9-32. Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 17/27

  22. General H -type algebras Do the general H -type algebras ( N = V ⊕ ⊥ Z , [ · , · ] , �· , ·� ) admit integer constants? � C j C j [ v α , v β ] = αβ ∈ Z . αβ z j , j Answer is YES! Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 18/27

  23. Atiyah-Bott periodicity of Clifford algebras Cl r +8 ,s ∼ Cl r,s ⊗ Cl 8 , 0 ∼ Cl r,s ⊗ R (16) Cl r,s +8 ∼ Cl r,s ⊗ Cl 0 , 8 ∼ Cl r,s ⊗ R (16) Cl r +4 ,s +4 ∼ Cl r,s ⊗ Cl 4 , 4 ∼ Cl r,s ⊗ R (16) Cl r,s +1 ∼ Cl s,r +1 Pseudo H -type algebras, integer structure constants and isomorphisms. – p. 19/27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend