proton ceramic electrodics
play

PROTON CERAMIC ELECTRODICS T. Norby, a R. Strandbakke, a E. Vllestad, - PowerPoint PPT Presentation

IDHEA, Nantes, France, 2-4 November 2016 PROTON CERAMIC ELECTRODICS T. Norby, a R. Strandbakke, a E. Vllestad, a Min Chen, a S.A. Robinson, a C. Kjlseth b a University of Oslo, Department of Chemistry, SMN, FERMiO, Gaustadallen 21, NO-0349


  1. IDHEA, Nantes, France, 2-4 November 2016 PROTON CERAMIC ELECTRODICS T. Norby, a R. Strandbakke, a E. Vøllestad, a Min Chen, a S.A. Robinson, a C. Kjølseth b a University of Oslo, Department of Chemistry, SMN, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway B CoorsTek Membrane Sciences AS, Gaustadalléen 21, NO-0349 Oslo, Norway U 4e - PCE  Hydration 2H 2 O  Redox electrode  EIS: CT, MT 2H 2 4H + 400-700°C  SCL  Mixed conduction O 2  Voltammetry

  2. The electrolyte; example Y-doped BaZrO 3  Doping reaction • • +    → + + BaZrO / x 2BaO Y O 2Y v 5O 3 2 3 Zr O O  Hydration • • • + + = x H O ( g ) v O 2 OH 2 O O O  Note: This is not an electrode redox reaction.  The charge carriers do not enter via an electrode reaction  They are present in equilibrium with H 2 O(g)

  3. Electrode redox reactions  H 2 -side reaction − − − + ↔ + 2 H (g) 2O 2OH 2e 2 O O  O 2 +H 2 O-side reaction − − − + + ↔ + 2 O (g) 4OH 4e 2H O(g) 4O 2 O 2 O

  4. Electrode reaction pathways

  5. H 2 -side + ↔ H (g) v H 2 ads 2, ads + ↔ H v 2 H 2, ads ads ads + ↔ + H v H v | 2 ads i i ads ↔ H H | 2 Diffusion i i, int + ↔ H (g) v H 2 ads 2, ads + ↔ H v 2 H 2, ads ads ads ↔ H H | 2 Diffusion ads ads, tpb + − ↔ + − + − 2 H O v OH e | 2 CT ads, tpb/i, int O ads, tpb/i, int O

  6. O 2 +H 2 O side + ↔ O (g) v O 2 ads 2 , ads + ↔ O v 2 O 2 ads ads , ads ↔ O O | 2 Diffusion ads ads, tpb − − − − + + ↔ + + 2 O OH 2 e v OH O | 2 ads, tpb O ads, tpb ads, tpb O − − ↔ CT OH OH | 2 Diffusion ads, tpb ads − + − ↔ − + 2 OH OH O H O | 2 ads O O 2 ads ↔ + H O H O(g) v | 2 2 ads 2 ads

  7. Charge transfer (CT) − − − + ↔ + + 2 H O v OH e ads, tpb/i, int O ads, tpb/i, int O 2 n Fi ( ) n F β − β = = 0 , 1 eq red red 0 red p H 2 - (and p H 2 O?)- G k Q Q red red , , , , ct red ct red react red prod red RT RT dependencies − − − − + + ↔ + + 2 O OH 2 e v OH O ads, tpb O ads, tpb ads, tpb O 2 n Fi ( ) n F β − β = = 0 , 1 eq ox ox 0 ox G k Q Q p O 2 - and pH 2 O- ox ox , , , , ct ox ct ox react ox prod ox RT RT dependencies

  8. Cu and Pt point electrodes on BZCY in H 2 +H 2 O S.A. Robinson, C. Kjølseth, T. Norby, “Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr 0.7 Ce 0.2 Y 0.1 O 3−d “, in pub.

  9. Cu and Pt point electrodes on BZCY in H 2 +H 2 O S.A. Robinson, C. Kjølseth, T. Norby, “Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr 0.7 Ce 0.2 Y 0.1 O 3−d “, in pub.

  10. Mass transfer (MT)  Adsorption  Dissociation  Dissolution  Diffusion 2 ( 2 ) F = 0 1 / 2 eq G K p , , mt red mt red H RT 2 2 ( 4 ) F = 0 eq n m G K p p , , mt ox mt ox O H O RT 2 2

  11. Cu and Pt point electrodes on BZCY in H 2 +H 2 O + − ↔ + − + − 2 H O v OH e ads, tpb/i, int O ads, tpb/i, int O 2 n Fi ( ) n F β − β = = 0 , 1 eq red red 0 red G k Q Q red red , , , , ct red ct red react red prod red RT RT CT MT 2 ( 2 ) F = 0 1 / 2 eq G K p mt , red mt , red H RT 2 S.A. Robinson, C. Kjølseth, T. Norby, “Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr 0.7 Ce 0.2 Y 0.1 O 3−d “, in pub.

  12. Electrode space charge layer (SCL) ∆ ϕ 2 ( 0 ) F red Fc u Fc u + + H H + + RT = ≈ eq H H G λ ∆ ϕ   , ∆ ϕ scl red   ( 0 ) F ( ) F x ∫ λ     exp red exp dx     RT RT 0

  13. B+GB+SCL+CT for nanograined Ni on BZY in H 2 +H 2 O Min Chen, T. Norby, “Space Charge Layer Effect at the Ni/BaZr 0.9 Y 0.1 O 3- δ Electrode Interface in Proton Ceramic Electrochemical Cells”, under publication

  14. Mixed conduction – example O 2 +H 2 O-side electrode Typical Ideal H + Ideal H + Ideal Model Typical PCFC PCFC oxide H + conductor PCFC conductor cathode cathode cathode conductor e - e - 4e - 4e - 2O 2- 2O 2- O 2 4e - 4H + 4H + 4e - O 2 O 2 4H + 4H + O 2 2H 2 O 2H 2 O 2H 2 O

  15. PCFC oxygen electrodes (cathodes)  Mixed conductivity: protons, oxide ions, electrons (holes) Typical Typical PCFC oxide H + cathode conductor e - e - 4e - 2O 2- 2O 2- O 2 4e - 4H + O 2 R. Strandbakke, V. Cherepanov, A. Zuev, D.S. Tsvetkov, C. Argirusis, G. Sourkouni-Argirusis, 2H 2 O S. Prünte, T. Norby, “Gd- and Pr-based double perovskite cobaltites as oxygen side electrodes for proton ceramic fuel cells and electrolyser cells”, Solid State Ionics , 278 (2015) 120.

  16. Perovskite electrode on BaZr 0.7 Ce 0.2 Y 0.1 O 3 (BZCY)  Impedance spectra yield apparent -1.2 electrode polarisation resistances -1.0 -0.8 Z // ( Ω cm 2 ) Electrolyte Electrode -0.6 -0.4 S1 S2 S0 R p 2 R p 1 -0.2 0.0 14.0 14.5 15.0 / ( Ω cm 2 ) Z

  17. Perovskite electrode on BaZr 0.7 Ce 0.2 Y 0.1 O 3 (BZCY)  …but a more correct treatment is required -1.2  needs more input parameters and assumptions -1.0 -0.8 Z // ( Ω cm 2 ) Electrolyte Electrode -0.6 -0.4 S1 S2 S0 R p 2 R p 1 -0.2 0.0 14.0 14.5 15.0 / ( Ω cm 2 ) Z Recipe: Get individual R v ’s from conductivity data Calibrate to R v at S0 Calculate properly R v +R p,1 at S1 Calculate properly R v +R p,1 +R p,2 at S2 Express and fit 4 unknown R p ’s to variations in T , p O 2 , p H 2 O

  18. Perovskite electrode on BaZr 0.7 Ce 0.2 Y 0.1 O 3 (BZCY)  Modelling by fitting all data T ( ° C)  Protons vs oxide ions 700 600 500 400  Effect of electronic conduction 1 10  CT and MT(d) 0 1 2 )) 2 ) log( R ( Ω cm R ( Ω cm R p ,O 2- R p,H + -1 0.1 R p,d,H + R p,ct,H + R p R p,app -2 0.01 1.0 1.2 1.4 1.6 -1 ) 1000/T (K

  19. Voltammetry  Tafel plot displays the kinetics of only the forward or backward reaction  Yields β , n, i 0  May require EIS to deconvolute R ’s and η ’s  Example: Ni on BZY

  20. Summary • • • + + = x  Hydration H O ( g ) v O 2 OH 2 O O O + − ↔ − + − 2 H (g) 2O 2OH 2e  Redox-reactions 2 O O − − − + ↔ + + 2  Reaction paths and CT H O v OH e ads, tpb/i, int O ads, tpb/i, int O  EIS  Separate into G+GB, (SCL?), CT, MT  Pre-exponential: Microstructure  Activation energy: Kinetics  pH 2 , pH 2 O, pO 2 dependencies: Mechanistics D. Poetzsch, R. Merkle, J. Maier, J. Electrochem. Soc., 162 [9] (2015) F939.  Mixed conduction  Voltammetry

  21. Acknowledgements The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244, and from the Research Council of Norway through the PROTON (225103), FOXCET (228355), and ROMA (219194) projects.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend