protein hypernetworks
play

Protein Hypernetworks Johannes K oster, Eli Zamir, Sven Rahmann - PowerPoint PPT Presentation

Genome Informatics Protein Hypernetworks Johannes K oster, Eli Zamir, Sven Rahmann August 20, 2012 1 / 14 Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E 2 / 14 Protein


  1. Genome Informatics Protein Hypernetworks Johannes K¨ oster, Eli Zamir, Sven Rahmann August 20, 2012 1 / 14

  2. Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E 2 / 14

  3. Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14

  4. Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E scalability accuracy Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14

  5. Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E scalability accuracy ? Protein Hypernetworks Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14

  6. Structure Genome Informatics 1 Protein Hypernetworks 2 Mining Protein Hypernetworks 3 Data Aquisition 3 / 14

  7. G H I A G B Idea Genome Informatics Protein Network ( P , I ) B A C G H F D I E 4 / 14

  8. Idea Genome Informatics Protein Network ( P , I ) � B A G H C I G H F A D G I B E 4 / 14

  9. Idea Genome Informatics Protein Hypernetwork ( P , I , C ) Boolean Logic Protein Network ( P , I ) � Constraints C B A G H { G , H } ⇒ { I , H } C I G H F A D { A , B } ⇒ ¬{ G , B } G I B { G , B } ⇒ ¬{ A , B } E 4 / 14

  10. B A A B G G G H I Mining Protein Hypernetworks Genome Informatics G B A H C I G Protein Hypernetwork ( P , I , C ) H F D A I G B E 5 / 14

  11. Mining Protein Hypernetworks Genome Informatics G B A H C I G Protein Hypernetwork ( P , I , C ) H F D A I G B E Minimal network states ( Nec , Imp ) for q ∈ P ∪ I A B C A A B � H q ∧ c G H F G C A D G H I G c ∈ C E G D B I F F I F E I D C Satisfying model α : P ∪ I → { 0 , 1 } by tableau algorithm Nec := { q ′ ∈ P ∪ I | α ( q ′ ) = 1 } Imp := { q ′ ∈ P ∪ I | α ( q ′ ) = 0 due to active c ∈ C } 5 / 14

  12. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) ¬ AB � BC ¬ CD � 6 / 14

  13. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  14. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  15. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  16. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  17. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  18. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  19. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  20. Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14

  21. G H B A G I Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible 7 / 14

  22. Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible G H B A + = � G I 7 / 14

  23. Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible B B A A + = � G G 7 / 14

  24. A B A B C G G H H F D I I I E A C G H F D I I E Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E 8 / 14

  25. A C G H F D I I E Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E A B A B C Maximal combinations of minimal G G H H F D network states I I I E 8 / 14

  26. Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E A B A B C Maximal combinations of minimal G G H H F D network states I I I E A C Refined complexes G H F D ◮ no violated constraints I I E 8 / 14

  27. B A AB BC BG AG AH C G H GH CF FG CD F HI DF D FI I EF ED EI E Prediction of Functional Importance Genome Informatics Minimal network state graph Minimal network states B A AB A B C A B A BC BG AG H AH C G H F G G C H GH A D CF G FG CD H I G F HI DF D G E FI D B I F I I F EF ED F EI I E D C E 9 / 14

  28. Prediction of Functional Importance Genome Informatics Minimal network state graph Breadth first search from each node B B A AB A AB BC BC BG BG AH AG AH AG C C G G GH H GH H CF CF CD FG CD FG F HI F HI DF DF D D FI FI I I EF EF ED ED EI EI E E 9 / 14

  29. Prediction of Functional Importance Genome Informatics Minimal network state graph Breadth first search from each node B B A AB A AB BC BC BG BG AH AG AH AG C C G G GH H GH H CF CF CD FG CD FG F HI F HI DF DF D D FI FI I I EF EF ED ED EI EI E E Perturbation Impact Score PIS ( P , I , C ) ( Q ↓ ) := | BFS ( Q ↓ ) | 9 / 14

  30. Harvesting Constraints Genome Informatics Text-Mining Observation: Interaction dependencies are reported as single sentence natural language statements in literature. Tokenize full-text papers into relevant words and search for simple regular expression patterns. 71 new interaction dependencies from 59 000 human adhesome related papers. K¨ oster, Zamir, Rahmann. 2012 ... binding of Abl induces a conformational change in Cbl that allows binding of Src ... p . i p a p i p d i p p p . 10 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend