prospects for inelastic dark matter
play

Prospects for Inelastic Dark Matter Daniele Alves Stanford / SLAC - PowerPoint PPT Presentation

Prospects for Inelastic Dark Matter Daniele Alves Stanford / SLAC In collaboration with M. Lisanti and J. Wacker PHENO 10 DAMAs 8.9 annual modulation in single hit rate Bernabei et.al. Eur.Phys.J. C56(2008) DM interpretation due to


  1. Prospects for Inelastic Dark Matter Daniele Alves Stanford / SLAC In collaboration with M. Lisanti and J. Wacker PHENO ’10

  2. DAMA’s 8.9 σ annual modulation in single hit rate Bernabei et.al. Eur.Phys.J. C56(2008) DM interpretation due to Sun and Earth’s motion

  3. Elastic heavy WIMP interpretation excluded by other searches Aprile et.al. arXiv: 1005.0380 DAMA

  4. Inelastic Dark Matter (iDM) Tucker-Smith & Weiner Phys.Rev. D64 (2001) 043502 m+ δ m m 127 I 127 I E R δ m ~ 100 keV

  5. 1 ( δ m + m E µ ) v min = N R √ 2m E N R Heavy elements are favored 0.35 DM Local Velocity Distribution 0.30 0.25 0.20 127 I 0.15 72 Ge 0.10 0.05 0.00 0 100 200 300 400 500 600 v � km � s �

  6. 1 ( δ m + m E µ ) v min = N R √ 2m E N R 0.35 Summer DM Local Velocity Distribution 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 100 200 300 400 500 600 v � km � s �

  7. 1 ( δ m + m E µ ) v min = N R √ 2m E N R 0.35 Winter DM Local Velocity Distribution 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 100 200 300 400 500 600 v � km � s �

  8. 1 ( δ m + m E µ ) v min = N R √ 2m E N R High modulation fraction 0.35 inelastic DM Local Velocity Distribution 0.30 0.25 0.20 Rate elastic 0.15 0.10 0.05 0.0 0.5 1.0 1.5 2.0 2.5 3.0 time � years � 0.00 0 100 200 300 400 500 600 v � km � s �

  9. CRESST experiment might have seen less events than typically predicted by iDM in the 10 - 40 keV region preliminary W. Seidel - WONDER 2010 Workshop

  10. XENON100 only 11 live days of exposure for calibration run strongest current limits on DM XENON100 collaboration arXiv: 1005.0380

  11. XENON100 only 11 live days of exposure for calibration run strongest current limits on DM XENON100 collaboration Decisively arXiv: 1005.0380 CONFIRM or REFUTE iDM hypothesis

  12. What affects predictions for Dark Matter Direct Detection ? Astrophysical uncertainties Local DM velocity distribution Particle physics uncertainties DM interactions & scattering kinematics Detector uncertainties Target nucleus form factor & quenching factor

  13. Astrophysical uncertainties scattering rate in iDM is highly sensitive to velocity distribution � v esc f ( � v + � v earth ) dR d � v dt ∝ v v min standard assumption: Maxwell-Boltzmann distribution v 2 − v 2 esc − v 2 v 2 0 ) Θ ( | � f ( � v ) ∝ ( e v | ) 0 − e v esc − � standard procedure: benchmark velocity parameters and v 0 v esc narrows the parameter space and limits the predictions broader and more sensible procedure: marginalize over unknown velocity parameters

  14. Astrophysical uncertainties numerical simulations of galactic DM structure: significant departure from Maxwell-Boltzmann distribution substructures and streams? Law & Majewski observations of Saggitarius stellar tidal steam Ap.J. 714 (2010) 229-254 triaxial Milky Way halo? symmetry axes of halo and disk unrelated?

  15. Astrophysical uncertainties Investigate 3 scenarios: − v 2 Standard Maxwell-Boltzmann v 2 0 Θ ( | � f ( � v ) ∝ e v | ) v esc − � marginalize over and v 0 v esc Local stream v ) = δ 3 ( � f ( � v stream ) v − � marginalize over magnitude and direction of � v stream − v 2 v ) ∝ e − α L 2 Axisymmetric halo v 2 0 Θ ( | � f ( � v | ) y e v esc − � marginalize over , and v 0 v esc α

  16. Astrophysical uncertainties 1.0 Typical range when Modulation Fraction DM Stream benchmarking 0.8 Mod Fraction 0.6 Axisymmetric 0.4 Maxwellian 0.2 0.0 50 0 20 30 40 10 0.0 0.1 0.2 0.3 0.4 0.5 # CRESST events / 100kg-d (10-40 keV)

  17. Uncertainties in iDM particle properties Cross-Section dependence on momentum transfer (e.g. sneutrino) σ ∝ σ 0 Dark Matter Form Factor (sign of compositeness) σ ∝ σ 0 q 2 (e.g. CiDM) σ ∝ σ 0 q 4

  18. Uncertainties in iDM particle properties DAMA σ 0 σ 0 q 2 Modulation Amplitude � cpd � kg � keVee � ) e 0.03 e V � e k � / g k σ 0 q 4 0.02 / d p c � ( e � t a � R 0.01 � d e � t a � l � u � d 0.00 � o � M 0 20 40 60 80 Recoil Energy � keV �

  19. Uncertainties in iDM particle properties CRESST 0.10 σ 0 σ 0 q 2 Modulation Amplitude � cpd � kg � keVee � 0.03 0.08 Rate � cpd � kg � keV � � � 0.06 σ 0 q 4 0.02 � 0.04 � � 0.01 � 0.02 � � � � 0.00 0.00 � � 0 20 40 60 80 0 20 40 60 80 Recoil Energy � keV � Recoil Energy � keV �

  20. Uncertainties in iDM particle properties 1.0 Typical range when σ 0 q 4 benchmarking Modulation Fraction 0.8 σ 0 q 2 Mod Fraction 0.6 0.4 σ 0 0.2 0.0 0 10 20 30 40 50 0.0 0.1 0.2 0.3 0.4 0.5 # CRESST events / 100kg-d (10-40 keV) � Events � kg � day

  21. Detector uncertainties Quenching Factor for 127 I q = E scintillation E nuclear recoil Several independent measurements found 0 . 05 ≤ q I ≤ 0 . 09 Recoil Energy (keV) Reference Q I q I Bernabei et.al. PLB389 (1996) 22-330 0.09 ± 0.01 Pecourt et.al. ApJ11 (1999) 40-100 0.08 ± 0.02 Tovey et.al. PLB433 (1998) 10-71 0.086 ± 0.007 Fushimi et.al. PRC47 (1993) 40-300 0.05 ± 0.02

  22. Detector uncertainties DAMA q=0.085 ) Modulation Amplitude � cpd � kg � keVee � e 0.03 e V � e k � / g k 0.02 / d p c � ( � e � t a 0.01 � R d � e � t � a l � u 0.00 � � d o M 0 20 40 60 80 100 120 Recoil Energy � keV �

  23. Detector uncertainties DAMA q=0.070 ) Modulation Amplitude � cpd � kg � keVee � Modulation Amplitude � cpd � kg � keVee � e 0.03 0.03 e V � � e k � � / g k 0.02 0.02 / d p c � � ( � � e � � t a 0.01 0.01 � � R d � � e � � t � � a l � � u 0.00 0.00 � � � � d o M 0 0 20 20 40 40 60 60 80 80 100 100 120 120 Recoil Energy � keV � Recoil Energy � keV �

  24. Detector uncertainties DAMA q=0.060 ) Modulation Amplitude � cpd � kg � keVee � Modulation Amplitude � cpd � kg � keVee � Modulation Amplitude � cpd � kg � keVee � e 0.03 0.03 0.03 e V � � � e k � � � / g k 0.02 0.02 0.02 / d p c � � � ( � � � e � � � t a 0.01 0.01 0.01 � � � R d � � � e � � � t � � � a l � � � u 0.00 0.00 0.00 � � � � � � d o M 0 0 0 20 20 20 40 40 40 60 60 60 80 80 80 100 100 100 120 120 120 Recoil Energy � keV � Recoil Energy � keV � Recoil Energy � keV �

  25. Detector uncertainties CRESST q=0.085 0.10 q=0.070 0.08 Rate � cpd � kg � keV � q=0.060 0.06 0.04 0.02 0.00 0 50 100 150 Recoil Energy � keV �

  26. Detector uncertainties # CRESST events / 100kg-d 25 0.25 q=0.060 40-100 keV window 20 0.20 N events � kgday � 40 � 100 keV � 15 0.15 q=0.070 Typical range when benchmarking 10 0.10 q=0.085 5 0.05 0 0.00 40 10 20 30 0 0.0 0.1 0.2 0.3 0.4 10-40 keV window N events � kgday � 10 � 40 keV �

  27. Summary and Conclusions Uncertainties on the DM velocity distribution, DM form factor and 127 I quenching factor have a dramatic impact on predictions for direct detection In light of that, it is unlikely that the next CRESST data release will rule out iDM in a completely model independent way. XENON100 data from this summer will decisively exclude of confirm iDM. In case it confirms iDM, it might tell us a lot about properties of the dark matter particle and our Milky Way halo.

  28. THANK YOU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend