prospects for dark matter detection with inelastic
play

Prospects for dark matter detection with inelastic transitions of - PowerPoint PPT Presentation

Prospects for dark matter detection with inelastic transitions of xenon Christopher M c Cabe preliminary results work in progress TeVPA, Tokyo, Japan - 27th October 2015 An old idea The original direct detection paper: Christopher


  1. Prospects for dark matter detection with inelastic transitions of xenon Christopher M c Cabe preliminary results —work in progress— TeVPA, Tokyo, Japan - 27th October 2015

  2. An old idea… • The original direct detection paper: Christopher M c Cabe GRAPPA - University of Amsterdam

  3. An old idea… Inelastic scattering • What is it? • Why is it interesting? • Why consider it now? Can it ever be detected? Christopher M c Cabe GRAPPA - University of Amsterdam

  4. What is it? DM elastic scattering: measure: DM N’s recoil energy N N r e c o i l DM inelastic scattering: measure: DM γ N’s recoil energy N N* r e c + photon energy o i l N Christopher M c Cabe GRAPPA - University of Amsterdam

  5. What is a good target? XENON Christopher M c Cabe GRAPPA - University of Amsterdam

  6. Why Xenon? Inelastic scattering is not A 2 enhanced ★ Only accessible for spin-dependent interactions ➡ Elastic and inelastic scattering rates comparable Vietze et al arXiv:1412.6091 ★ Ideal target should have i. good spin-dependent sensitivity ( . E DM − kinetic ≈ 100 keV) ii. a low lying excitation Christopher M c Cabe GRAPPA - University of Amsterdam

  7. Why Xenon? • 47.6% of xenon sensitive to spin-dependent interactions: + 5/2 129 Xe 131 Xe 900 129 Xe 800 Natural abundance: 26.4% Excitation energy (keV) + + 3/2 700 5/2 + - Lowest excitation: 39.6 keV 1/2 7/2 + 7/2 600 + Lifetime: 0.97 ns (1/2,3/2) + (5/2) + 500 7/2 + 7/2 + (5/2) + + 1/2 3/2 400 131 Xe + + 5/2 3/2 + 5/2 - + 9/2 3/2 300 Natural abundance: 21.2% + - 5/2 (9/2) - 11/2 - 11/2 200 - Lowest excitation: 80.2 keV 9/2 - 11/2 + 3/2 Lifetime: 0.48 ns 100 + 11/2 1/2 + 3/2 + + + 1/2 1/2 3/2 0 Exp Exp Theory Christopher M c Cabe GRAPPA - University of Amsterdam

  8. Previous studies • Previous searches with single phase-detectors • No limits or studies for two-phase detectors (LUX, XENON) Christopher M c Cabe GRAPPA - University of Amsterdam

  9. Why is it interesting? Inferring properties of dark matter is difficult! We should search for all signals that provide information A detection should: • give independent evidence for dark matter scattering - point strongly to a spin-dependent interaction - help with mass reconstruction (because of different kinematics) - Christopher M c Cabe GRAPPA - University of Amsterdam

  10. Why now? We can accurately quantify the signal and background - Structure functions known (needed for cross-section) - Backgrounds are more-or-less known - Future detector properties are more-or-less known Christopher M c Cabe GRAPPA - University of Amsterdam

  11. An old idea… Inelastic scattering Can it ever be detected? Christopher M c Cabe GRAPPA - University of Amsterdam

  12. Scattering rate • Rate depends on the DM velocity distribution: d 3 v f ( v ) dR Z ∝ g ( v min ) = dE R v v min Baudis et al 1309.0825 1 Standard Halo Model Double Power Law • v min is higher for inelastic Tsallis Model 0.1 (DM kinetic energy must g(v min )/g(0) also excite the nucleus) 0.01 • This suppresses 129 Xe 131 Xe the inelastic rate 0.001 Inelastic Inelastic Elastic by factor ~10 -4 10 0 100 200 300 400 500 600 700 800 v min (km/s) Christopher M c Cabe GRAPPA - University of Amsterdam

  13. Structure functions • Known for axial-vector interaction: • Rate depends on the structure functions dR / d σ � 2 � h Xe ∗ | ¯ / S n ψ q γ µ γ 5 ψ q | Xe i � � A = dE R dE R ��� �� ��������� ��������� �� - � • Smaller for inelastic � ������� ( �� + �� ) � � � ��������� ( �� + �� ) � � (Small E R most relevant) n ( E R ) • This suppresses �� - � S A the inelastic rate by factor ~10 �� - � � �� �� �� �� ��� E R [ keV ] Baudis et al 1309.0825 Christopher M c Cabe GRAPPA - University of Amsterdam

  14. The rate • Rate as a function recoil energy (not directly measured) � = �� - �� �� � � �� = ���� ���� σ � ��� �� ������� ��� �� ��������� �� � � / � � � [ ������ / � / �� / ��� ] ��� �� ������� ��� �� ��������� ����� ������� ����� ��������� � �� - � �� - � � �� �� �� �� ��� � � �� ��� �� ������� [ ��� ] • Inelastic rate smaller by factor ~100 ➡ Always see an elastic signal first Christopher M c Cabe GRAPPA - University of Amsterdam

  15. Two-phase xenon detectors • Express the signal in terms of measured quantities: S 1 S 2 S2 = g 2 n e S1 = g 1 n γ γ E e- field Particle 52 phe 4540 phe g 1 , g 2 and drift field are the crucial parameters Christopher M c Cabe GRAPPA - University of Amsterdam

  16. Mock detectors • I’ll consider two benchmark scenarios: XenonA200 XenonB1000 γ γ g 1 =0.07 PE/ g 1 =0.12 PE/ g 2 =12.5 PE/e g 2 =50 PE/e (50% extraction efficiency) (100% extraction efficiency) drift field=200 V/cm drift field=1000 V/cm • Number of photons & electrons modelled with NEST Szydagis et al 1106.1613 Christopher M c Cabe GRAPPA - University of Amsterdam

  17. Mock signals • Include detector and recombination fluctuations � ⨯ �� � ��������� ���������� ��� ⨯ �� � γ ���� ��� �� γ ���� ��� �� �������� �� � [ �� ] �������� �� � [ �� ] + �� ��� �� � ⨯ �� � + �� ��� �� � ⨯ �� � � ⨯ �� � γ ���� ��� �� + �� ��� �� γ ���� ��� �� � ⨯ �� � + �� ��� �� � ⨯ �� � � ⨯ �� � �� ��� �� �� ��� �� � � � ��� ��� ��� ��� � ��� ��� ��� ��� ��� ��� �������� �� [ �� ] �������� �� [ �� ] • For same energy, electronic recoils produce a much larger S1 and S2 Christopher M c Cabe GRAPPA - University of Amsterdam

  18. Mock signals 😄 • Looks like real data… 3 10 ��������� 60000 ��� ⨯ �� � γ ���� ��� �� �������� �� � [ �� ] + �� ��� �� 50000 80 keV +NR ee 2 10 � ⨯ �� � 40000 S2 [PE] γ ���� ��� �� + �� ��� �� 30000 � ⨯ �� � 40 keV +NR 10 20000 ee �� ��� �� NR 10000 � � ��� ��� ��� ��� 0 1 0 100 200 300 400 500 600 �������� �� [ �� ] S1 [PE] Data from PandaX-I arXiv:1505.00771 Christopher M c Cabe GRAPPA - University of Amsterdam

  19. Background • Background spectra expected in LZ/XENONnT: LZ Design: 1509.02910 129 Xe 131 Xe �� � ���������� ����� � � / � � [ ������ / � / �� / ��� ] � νββ (± � %) �� 136 Xe ����� �� (± ��� %) � �� (± �� %) �� (± �� %) ����� � �� (± � %) �� - � ��������� (± �� %) � �� ��� ��� ��� ������ � [ ��� ] • 2-neutrino — 2-beta decay of 136 Xe dominates above 20 keV Christopher M c Cabe GRAPPA - University of Amsterdam

  20. Reminder: Usual signal plane LUX arXiv:1310.8214 electronic recoil band nuclear recoil band signal region S1 < 30 PE Christopher M c Cabe GRAPPA - University of Amsterdam

  21. Background versus signal • Signal region at higher values of S1 ����������� � ����� - ���� ���������� � ����� - ���� ��� � = �� - �� �� � � = �� - �� �� � � �� = ���� ���� σ � � �� = ���� ���� σ � ��� �� ��������� ��� �� ��������� ��� �� ��������� ��� �� ��������� �� ���� �� ���� ��� �� ���� �� ���� ��� ��� �� ( �� � / �� ) ��� �� ( �� � / �� ) ��� ��� ��� ��� ��� � ��� ��� ��� ��� ��� ��� ��� � ��� ��� ��� ��� ��� ��� ��� �������� �� [ �� ] �������� �� [ �� ] Large backgrounds…but some signal-to-background discrimination • Better discrimination for higher drift fields • Christopher M c Cabe GRAPPA - University of Amsterdam

  22. Discovery limit • Quantify the sensitivity of future experiments with a ‘discovery limit’ Billard et al 1110.6079 The smallest cross-section at which 90% of experiments can make a 3 σ detection of the signal • Profile likelihood ratio: ˆ ˆ ~ � (0) = L ( � 0 n = 0 , A BG ) n , ˆ L ( ˆ ~ � 0 A BG ) - Include background uncertainties Christopher M c Cabe GRAPPA - University of Amsterdam

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend