properties of reductions of groups of rational numbers
play

Properties of Reductions of Groups of Rational Numbers History On - PowerPoint PPT Presentation

Artin Conjecture F. Pappalardi Properties of Reductions of Groups of Rational Numbers History On ArtinGau Conjeture facts abount period lengths Conference Artin Conjecture 2 nd International Conference of Mathematics and its


  1. Artin Conjecture F. Pappalardi Properties of Reductions of Groups of Rational Numbers History On Artin–Gauß Conjeture facts abount period lengths Conference Artin Conjecture 2 nd International Conference of Mathematics and its Lehmer’s entanglement factor Applications- ICMA Hooley’s result University of Basrah College of Science, October 23-24, 2013 the Quasi Resolution A new result Francesco Pappalardi Dipartimento di Matematica e Fisica Università Roma Tre 1

  2. Artin Conjecture History of Artin Conjecture F. Pappalardi Gauß question on lengths of periods What are the primes p s.t. 1 / p has length p − 1? History facts abount period For example: lengths 1 Artin Conjecture 7 = 0 . 142857, Lehmer’s 1 17 = 0 , 0588235294117647, entanglement factor 1 Hooley’s result 19 = 0 . 052631578947368421 , the Quasi Resolution . . . A new result 1 47 = 0 . 0212765957446808510638297872340425531914893617 First few primes with this property: 7 , 17 , 19 , 23 , 29 , 47 , 59 , 61 , 97 , 109 , 113 , 131 , 149 , 167 , 179 , 181 , 193 , . . . k p := length of the period of 1 / p k 3 = 1 , k 11 = 2 , k 13 = 6 , k 2 and k 5 are not defined 2

  3. Artin Conjecture Gauß question on lengths of periods F. Pappalardi The period–length of the fraction 1 / p is the least k s.t. 1 p = 0 . a 1 · · · a k = 0 . a 1 · · · a k a 1 · · · a k . . . History facts abount period lengths Artin Conjecture In other words Lehmer’s entanglement factor � a 1 � � 1 a k 1 1 � Hooley’s result = 10 + · · · + × 1 + 10 k + 10 2 k + · · · 10 k + 1 p the Quasi Resolution A new result M = 10 k − 1 Hence M × p = 10 k − 1 So k p is the least integer such that 10 k − 1 is divisible by p ! 3

  4. Artin Conjecture Algebraic properties of period lengths F. Pappalardi • The period length k p of 1 / p is the least integer such that History 10 k − 1 is divisible by p facts abount period lengths • Fermat Little Theorem says that 10 p − 1 − 1 is divisible by p Artin Conjecture Lehmer’s • So k p ≤ p − 1 entanglement factor Hooley’s result • Indeed it is not hard to show k p is a divisor of p − 1 the Quasi Resolution • Sometimes the period is small: A new result 1 / 1111111111111111111 = 0 , 0000000000000000009 • most of the times k p > √ p not obvious! • Gauß in particular asked what are the frequencies of periods 4

  5. Artin Conjecture Some statistics on period lengths: F. Pappalardi Let k p be the period length of 1 / p . The following table contains δ m = { p < 2 31 : k p = p − 1 m } History # { p ≤ 2 31 } facts abount period lengths for m = 1 , . . . , 40. Artin Conjecture Lehmer’s m 1 2 3 4 5 6 7 entanglement factor δ m 0.37393 0.28047 0.06649 0.07133 0.01890 0.04986 0.00893 Hooley’s result m 8 9 10 11 12 13 14 the Quasi Resolution δ m 0.01660 0.00739 0.01416 0.00340 0.01268 0.00240 0.00669 A new result m 15 16 17 18 18 20 21 δ m 0.00335 0.00415 0.00136 0.00553 0.00109 0.00235 0.00158 m 22 23 24 25 26 27 28 δ m 0.00255 0.00073 0.00294 0.00075 0.00180 0.00081 0.00171 m 29 30 31 32 33 34 35 δ m 0.00046 0.00251 0.00039 0.00103 0.00060 0.00103 0.00044 Note 2 , 94 % of primes p ≤ 2 31 have period k p = p − 1 with m > 35 m 5

  6. Artin Conjecture More algebraic properties of period lengths F. Pappalardi • Period are also defined with respect to any base a ∈ N • The period length of 1 / p in base a is the least k p ( a ) such that a k − 1 is divisile by p (a divisor of p − 1) History • It is not difficult to see that: facts abount period lengths the period length k p ( a ) = p − 1 if and only if the set Artin Conjecture Lehmer’s { a j : j = 1 , . . . , p − 1 } entanglement factor Hooley’s result the Quasi Resolution contains p − 1 distinct elements modulo p A new result • in other words the period length k p ( a ) = p − 1 if and only if p is not a divisor of a s − a r ∀ r , s : 1 ≤ r < s ≤ p − 1 • we express that condition writing � a mod p � = F ∗ or also # � a mod p � = p − 1 p • If the period length in base a of 1 / p is p − 1 (i.e. k p ( a ) = p − 1), we say that a is a primitive root modulo p 6

  7. Artin Conjecture Algebraic properties of period lengths F. Pappalardi from period lengths to primitive roots • So a is a primitive root modulo p if and only if � a mod p � = F ∗ p History (i.e. if there are p − 1 distinct powers of a modulo p ) facts abount period lengths • It is not hard to check that if p is a divisor of a , then 1 / p is Artin Conjecture a finite expansion in base a . Lehmer’s entanglement factor • for example 1 / 2 = 0 . 5 1 / 5 = 0 . 2 in decimal base and Hooley’s result 1 / 10 = 0 . 1 in binary base the Quasi Resolution • the condition a is a primitive root modulo p makes sense A new result also when a is a rational number and p does not divide numerator and denominator of a (i.e. v p ( a ) = 0) • a is a primitive root modulo p iff ∀ primes ℓ that divide p − 1 , p does not divide a ( p − 1 ) /ℓ − 1 • This is the base for Artin intuition on the Primitive Roots Conjecture 7

  8. Artin Conjecture Artin Conjecture (1927) F. Pappalardi Note Heuristically, the probability that a prime ℓ is such that both 1 ℓ divides p − 1 2 p divides a ( p − 1 ) /ℓ − 1 History facts abount period lengths are satisfied is 1 /ℓ ( ℓ − 1 ) . Hence the probability that a ( p − 1 ) /ℓ − 1 is not divisible by p for Artin Conjecture Lehmer’s all primes ℓ dividing p − 1 is entanglement factor Hooley’s result � � 1 the Quasi Resolution � A = 1 − = 0 , 373955 . . . A new result ℓ ( ℓ − 1 ) ℓ ≤ 2 Definition ( A is called the Artin constant ) Conjecture # { p ≤ x : p � = 2 , 5 , � 10 mod p � = F ∗ p } lim x →∞ = A # { p ≤ x } What if instead of 10 we consider a ∈ Z \ {− 1 , 0 , 1 } ? 8

  9. Artin Conjecture Artin Conjecture (1927) F. Pappalardi History facts abount period lengths Artin Conjecture Lehmer’s entanglement factor Hooley’s result the Quasi Resolution A new result Emil Artin (March 3, 1898 - December 20, 1962) Conjecture (Artin Conjecture – first version) {− 1 , 0 , 1 } ∪ { b 2 : b ∈ Q } � � If a ∈ Q \ , then # { p ≤ x : v p ( a ) = 0 , � a mod p � = F ∗ p } ∼ A π ( x ) 1 � here π ( x ) = # { p ≤ x } and A = 1 − ℓ ( ℓ − 1 ) = 0 , 37395 . . . ℓ ≤ 2 9

  10. Artin Conjecture Some numerical tests for Artin Conjecture F. Pappalardi Let S a = { p ≤ 2 29 : � a mod p � = F ∗ d a = # S a /π ( 2 29 ) p } , History Note that π ( 2 29 ) = 28192750 and A = 0 , 373955 . . . . facts abount period lengths Artin Conjecture a S a d a a S a d a Lehmer’s -15 10432805 0.37005 2 10543421 0.37397 entanglement factor -14 10543340 0.37397 3 10543631 0.37398 Hooley’s result -13 10542796 0.37395 5 11098098 0.39365 -12 12653339 0.44881 6 10543607 0.37398 the Quasi Resolution -11 10639090 0.37736 7 10544579 0.37401 A new result -10 10543135 0.37396 8 6325893 0.22438 -9 10542743 0.37395 10 10542876 0.37395 -8 6325704 0.22437 11 10542933 0.37395 -7 10799148 0.38304 12 10545029 0.37403 -6 10543575 0.37398 13 10611720 0.37639 -5 10542080 0.37392 14 10542946 0.37395 -4 10543032 0.37396 15 10544134 0.37400 -3 12651353 0.44874 17 10582932 0.37537 -2 10542194 0.37393 18 10545385 0.37404 Not always so totally convincing evidence! Not convincing for a ∈ {− 15 , − 12 , − 11 , − 8 , − 7 , − 3 , 5 , 8 , 13 , 17 } 10

  11. Artin Conjecture Artin Conjecture F. Pappalardi Lehmer’s correction History facts abount period lengths Artin Conjecture Lehmer’s entanglement factor Hooley’s result Derrick Henry Lehmer (Feb 1905 - May 1991) the Quasi Resolution A new result Remark (Lehmer’s Remark) The probabilities that, given two primes ℓ 1 and ℓ 2 , a prime p is such that 1 ℓ i divides p − 1 2 p divides a ( p − 1 ) /ℓ i − 1 for i = 1 , 2 are not always independent!! So there is the need for a correction factor (the entanglement factor ) 11

  12. Artin Conjecture Artin Conjecture F. Pappalardi after Lehmer’s correction Conjecture (Artin Conjecture – final form) Let a ∈ Q ∗ \ { 1 , − 1 } , then p − 1 = # � a mod p � for a proportion of primes δ a where History facts abount period lengths δ a = r a × t a , Artin Conjecture where if h = max { j : a = b j , b ∈ Q } , ∂ ( a ) = disc ( Q ( √ a )) , Lehmer’s entanglement factor Hooley’s result � 1 − gcd ( h , ℓ ) � the Quasi Resolution � t a = A new result ℓ ( ℓ − 1 ) ℓ ≥ 2 and r a = 1 unless if ∂ ( a ) is odd in which case: − 1 r a = 1 − � ℓ | ∂ ( a ) ℓ ( ℓ − 1 ) / gcd ( ℓ, h ) − 1 Note that • t a is a rational multiple of the Artin Constant A • δ a = 0 iff a is a perfect square • ∂ ( a ) is easy but technical to define 12

  13. Artin Conjecture Artin Conjecture F. Pappalardi Effect of the Lehmer entanglement We were not convinced for a ∈ {− 15 , − 12 , − 11 , − 8 , − 7 , − 3 , 5 , 8 , 13 , 17 } History facts abount period lengths a δ a d a Artin Conjecture -15 0.37001 0.37005 Lehmer’s -12 0.44875 0.44881 entanglement factor -11 0.37709 0.37736 Hooley’s result the Quasi Resolution -8 0.22437 0.22437 A new result -7 0.38308 0.38304 -3 0.44875 0.44874 5 0.39363 0.39365 8 0.22437 0.22438 13 0.37636 0.37639 17 0.37533 0.37537 For all other values of a in the previous table, δ a = A 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend