proof mining in trees and hyperbolic spaces
play

Proof mining in -trees and hyperbolic spaces Laurent iu Leus - PowerPoint PPT Presentation

1 Proof mining in -trees and hyperbolic spaces Laurent iu Leus tean TU Darmstadt, Germany and Institute of Mathematics Simion Stoilow of the Romanian Academy


  1. 1 Proof mining in -trees and hyperbolic spaces Laurent ¸iu Leus ¸tean TU Darmstadt, Germany and Institute of Mathematics ”Simion Stoilow” of the Romanian Academy

  2. ✸ ✘ ✮ � ★ ✧ ✆ ✹ ✸ ✹ ✡ ✎ ✚ ✡ ✆ ★ ✝ ✻ ✰ ✪ ✷ ✱ ✶ ✶ ✶ ✵ ✱ ✎ ✲ ✝ ✺ ✮✯ ✽ ✦ ✁ ✝ ✟ ❀ ✿ ✾ ✻ ✝ ❁ ✘ ★ ✦ ✟ ☛ ✷ ✱ ✶ ✶ ✶ ✵ ✱ ✳ ✰ ★ ❂ ✡ ✄ ☎ ★ ✑ ✝ ✓ ✡ ✝ ✻ ✎ ✝ ✏ ✎ ✌ ✑ ✎ ✏ ✹ ❃ ✎ ✬ ✆ ☎ ✄ ✘ ✂ ✡ ✁ ✚ � ✎ ✡ ✸ ✡ ☛ ✎ ☛ ✫ ✑ ✏ ✓ ✫ ✓ ❂ ✝ ✆ ☎ ✄ ✦ ✆ ✆ ✟ ✝ ✦ ✁ ★ ✩ ✦ � ★ ✧ ✦ ✮ ✩ 2 General metatheorem Theorem 1 (Gerhardy/Kohlenbach, 2005) Polish space, compact metric space, ”small” type, , ✡☞☛✍✌ ✆✞✝✠✟ contain only free, resp. free. Assume that ✆✞✝✒✟ ✡☞✓ ✡☞☛ ✔✖✕ ✛✢✜ ✗✙✘ ✡☞✚ ✣✥✤ ✡☞☛ ✎✞✪ ✆✞✝ ✡☞✓ ✎✭✬ Then there exists a computable functional such ✰✍✱ ✰✴✳ that the following holds in all nonempty metric spaces : for all representatives of and all , if there ✝✼✻ exists an such that , then ✆✞✝ ✎✞✪ ✆✞✝ ✡☞✓ The theorem also holds for nonempty hyperbolic spaces , ✡❅❄ CAT(0)-spaces, normed spaces, inner product spaces.

  3. ✻ � � � � ✁ ✂ � ✁ 3 General metatheorem the metatheorem can be used as a black box: infer new uniform existence results without any proof analysis run the extraction algorithm: extract an explicit effective bound given proof new proof for the stronger result new mathematical proof of a stronger statement which no longer relies at any logical tool

  4. � ✽ 4 Metatheorems for other classes of spaces adapt the metatheorem to other classes of spaces: 1. the language may be extended by -majorizable constants 2. the theory may be extended by purely universal axioms

  5. ✬ ✩ ✩ ✸ ✏ ✑ ✒✓ ✔ ✝ ✡ ✡ ✟ ✧ ✡ � ★ ✘ ✚ ✡ ✌ ✡ ✎ ✙ ✂ ✡ ✆ ✁ ✧ ✎ ✂ ✟ ✘ ✡ ✬ ✘ ✡ ✡ ☛ ☞ � ✩ ✝ ✧ ✆ ✡ ✚ ✡ � ✎ ✝ ✚ ✩ � ✡ ✧ ✎ ✙ ✝ ✆ ✡ ✎ ✡ ✚ ✚ ✆ ✧ ✡ � ✎ ❂ ✕ ✛ ✩ ✘ ✚ ✡ ✧ ✎ ✝ ✚ ✆ ✎ ✩ ✁ ✝ ✁ ✌ ✟ ✡ ✩ ✘ ✎ ☞ ☛ ✡ ✂ ✄ � ✝ ☎ ✎ ✩ ✡ ✆ ✚ ✆ � ✡ ✩ ✆ ✚ ✚ ✩ ✸ ✏ ✡ � ✆ ✘ ✗ ✆ ✕✖ ☛ ✂ ✎ ✩ ✁ ✘ ✎ ✘ ★ ✑✒✓ ✝ � ✡ ✧ ✩ ✡ ✩ � ✡ ✝ ✔ ✆ � defined to be: ✆✞✝ ✡☞✚ Let the Gromov product of is Gromov hyperbolic if it is is metric space . ✁ ✎✍ ✆✞✝ is called Gromov hyperbolic spaces iff for all and ✆✞✝ ✁ ✎✍ ✆✞✝ -hyperbolic for some with respect to the base point ✎ ✞✝ if for all ✆✞✝ ✎ ✠✟ , ✆✞✝ ✎✭✬ . , is 5

  6. ✎ ✝ ✝ ✎ � ✡ ✄ ✎ � ✡ ✩ ✆ ✄ ✚ ✂ ✎ ✚ ✧ ✡ ✝ ✆ ✄ ✚ ✘ ✂ ✛ ✚ ✕ ✂ ✂ ✂ ✄ ✎ ✕ ✡ ✡ ✚ ✡ ✘ ✆ ✣ ✡ ✡ ✚ ✡ ✘ ✗ ✔ ✆ � ❃ ✡ ✂ ✁ ✆ ✂ ✝ ✙ ✎ ✧ ✡ ✩ ❂ ❂ � ✘ ✦ ✗ ✡ ✂ ☞ ✂ ☛ ✡ ✡ ☎ ✝ ✡ ✡ ✣ ✔ ✣ ✜ ✛ ✚ ✡ ✘ ✕ ✄ ✕ ✔ ✧ ✆ � ✄ ✚ ✂ ✝ ✎ ✩ ✡ ✄ ✡ ✚ ❁ ✄ � ✡ ✄ ✧ ✡ ✄ ✩ ✗ 6 Gromov hyperbolic spaces The theory of Gromov hyperbolic spaces, -hyperbolic is ✡☞✚ ✛✢✜ defined by extending as follows: 1. add a constant of type , ✡ ✁� 2. add the axioms ✆✞✝ ✡☞✚ ✆✞✝ Theorem 1 holds also for -hyperbolic and nonempty ✛✙✜ Gromov hyperbolic spaces

  7. ✬ ✎ ✆ ❄ ✆ ✎ ✚ ✆ ❄ ✡ ✧ ✆ ✎ ✩ ✡ � ✎ ✎ ❂ ✆ ☎ ✟ � ✡ � ✚ ✝ ✡ ✩ ✡ ✆ ❄ ☎ ✎ ❄ ✆ ✡ ✟ ✩ ✎ ✄ ❄ ✆ ✩ ✡ ✝ ✡ ☎ ✎ ✡ ✁ ✡ ✡ ✩ ✛ ✯ ✄ ✘ ❄ ✆ ✝ ✩ ✗ ✎ ✯ � ★ ✗ ☞ ✡ ☎ ✛ ✙ ✝ � ✩ ✟ ✎ ✝ � ✚ ✆ ✧ ✡ � ✆ ☎ � ✡ ✎ ✝ ✝ � ✩ ✯ ✄ ❄ ✡ ✩ ✚ ✎ ✄ ✝ ❄ ☎ ✎ ✚ ✆ ✧ ✡ ❄ ✆ ✡ ✘ ✩ ✎ ✎ ❂ � ☎ ✟ � ✎ ✚ ✆ ✪ ✧ ✚ ❄ ✆ ✘ ✡ ✂ ✎ ✆ ✘ ✡ ✎ ✛ ❄ ✯ ✘ ✲ ✘ ✲ ✗ ☞ ✡ ☎ ✆ ✆ ✡ ✡ ❄ ✆ ✝ ✡ ✩ ✟ � ✎ ❄ ✎ ✆ ✄ ✝ ✡ ✩ ✡ ✄ ✂ � ✆ ✚ ✎ ✡ ✝ ✎ ✝ � ✚ ✆ ✆ ✧ ✩ ✎ ✡ ✆ ✂ ❄ ✎ Notation: and A [Takahashi, Goebel/Kirk, Reich/Shafrir, Kohlenbach] -hyperbolic space is a triple ✆✞✝ ✡ ✁� ✡❅❄ W-hyperbolic spaces ✡ ✁� ✡ ✁� ✆✞✝ ✡ ✁� ✡ ✁� s.t. ✡ ✁� ✡❅❄ ✎✭✬ where ✆✞✝ ✆✞✝ is metric space ✎✭✬ 7

  8. ✬ � ✝ ✩ ✁ ✡ ✘ � � ✎ ✘ ✁ ✆ ✡ ✎ ✚ ✘ ✆ ✡ � � ✎ ✘ ✝ ✄ ✧ ✚ ✘ ✛ ✚ ✕ ❂ ✎ � ✡ ✆ ✘ ✚ ✝ ✎ ✩ ✡ ✎ ✚ ✝ ❄ ✚ ✘ ☎ ✡ ✩ ✁ ✪ ✛ ✏ ✡ ✽ ✗ ✯ ✂ ✎ ✄ ✡ ✘ ✆ ✧ � ✎ ✁ � ✙ ✆ ✚ ✟ ✎ ✄ ✄ ✄ ✎ ✎ ☎ ✆ ✂ ✡ ✄ ★ ✆ ✂ ✆ ✚ ✝ ✛ ✏ ✡ ✽ ✗ ✧ 8 -trees -trees introduced by Tits(’77) A geodesic in a metric space is a map s.t. for all ✡☞✚ , ✡ ✆☎ is said to be a geodesic space if every two points are joined by a geodesic. A metric space is an -tree if is a geodesic space containing ✡☞✚ no homeomorphic image of a circle. is an -tree is a 0-hyperbolic geodesic space is a -hyperbolic space satisfying ✆✞✝ ✆✞✝ ✆✞✝

  9. ❂ ✡ ✎ � ✡ ✩ ✆ ✄ ✚ ✂ ✝ ✎ ✧ ✄ ✚ ✚ ✘ ✂ ✛ ✚ ✕ ✂ ❂ ✂ � ✁ ✡ ✄ ✡ ❃ ✣ ✁ ✡ ✚ ✡ ✘ ✗ ✕ ✔ � ✬ ✙ ✡ ✎ ✧ ✡ ✩ ✆ ✄ ✚ ✂ ✝ ✎ � � ✎ ✧ ✜ ✦ ✂ ✁ � ✕ ✆ ✗ ✣ ✛ ✄ ✘ ✡ ✚ ✕ ✔ ✡ ✣ ✜ ✝ ✡ ✁ ✄ ✄ ✚ ✂ ✝ ✎ ✩ ✡ � ✚ ✩ ❁ ✄ ✔ � ✡ ✄ ✧ ✡ ✄ ✛ axiom: Theorem 1 holds also for ✡❅❄ -tree ✆✞✝ ✆✞✝ results from ✡❅❄ -trees ✗✙✘ ✡☞✚ -tree ✡❅❄ ✛✢✜ ✆✞✝ and nonempty by adding the -trees. 9

  10. ✂ ✆ ✟ ☎ ✆ ❂ ✽ ✡ ✩ ✆ ☎ ✝ ✝ ☎ ✎ ✚ ✂ ☎ ✂ ✸ ✄ ✂ ✂ ✁ ✸ � ✡ ✸ ✎ ✆ ✄ ✯ ✡ ✸ ✛ ☎ ✡ ☞ ✆ ✪ ✛ ✡ ✬ ☞ ✆ ✲ ✎ ✡ ☞ ✆ ✯ ✆ � ✎ ☛ ✩ ✆ ★ ☞ ✆ ★ ✡ ✆ ☞ ✛ ✆ ✡ ☞ ✆ � ☎ ✡ ☞ ✾ ✸ ✆ ✎ ✛ ✂ ✡ ✘ ✆ ✡ ✛ ✡ ❂ ✾ ✚ ✸ ❂ ✎ ✽ ✡ ✩ ✆ ✚ ✸ ✎ ★ ✽ ✡ ☞ ✚ � ✘ ★ ✩ ✡ ✝ ✡ ✽ ✆ 10 Uniformly convex W-hyperbolic spaces is uniformly convex if for any , and there exists ✡❅❄ a s. t. for all , ✆✞✝ (1) ✆✞✝ A mapping providing such a for ✡ ✞✝ given and is called a modulus of uniform convexity .

  11. ✎ ✩ ✷ ✪ ✚ ✄ ✆ ✝ ✡ ✎ ✳ ❂ ✂ ✆ ✜ ✟ ❃ ✡ ✝ ✆ ✸ ✎ ✆ ✝ ✩ ✡ ☎ ✄ ✆ ✡ ☎ ✽ ✎ ✾ ✂ ☎ ✟ ✆ ✜ ✦ ✌ ❄ ✚ ✎ � ✔ ✕ ✗ ✘ ✡ ✡ ✡ ✆ ✣ ❄ ✆ ✘ ✡ ✆ � ✎ ✡ ✡ � ✌ ✆ ✆ ✄ ✆ ✸ � ✸ ✎ ✄ ✌ ✆ ✄ ✆ ✡ ✆ ✄ ✡ ✆ ✁ ✆ ✄ ☞ ☞ ☞ ✄ ✂ ❄ ✦ ✸ ✌ ✦ � ✌ ✣ ✡ ✝ ✚ � ✔ ✕ ✗ ✘ ✡ ✡ ✘ ✆ ✣ ❄ ✔ ✕ ✗ ✦ � ✄ ✡ ✸ ✂ ✚ ✡ ✆ ✩ ✽ ✁ ✎ ✁ ✂ ✸ ✂ ✂ ✚ ✂ ✄ ✄ ✚ ✎ ✩ ✽ ✄ ✡ ✡ ✝ ✆ ✽ ✄ ❁ 11 Uniformly convex W-hyperbolic spaces The theory of uniformly convex -hyperbolic spaces ✡❅❄ ✛✢✜ extends the theory as follows: ✡☞✚ ✛✢✜ 1. add a new constant of type , 2. add the following axioms: ✞✠✟ ✎✭✬ Theorem 1 holds also for and nonempty uniformly ✛✢✜ ✡❅❄ convex -hyperbolic spaces ✡☞✚ ✡❅❄

  12. ✬ ✯ ✝ ✁ ✝ ✎ ✁ � ✟ ☎ ✆ ✄ � ✁ ☎ ✁ ✝ ✡ ✝ ✄ ✯ ✌ ✝ ✏ � ✄ � ✝ ☞ ✄ ✎ ✁ ✝ ✄ ✡ ✁ ✚ ✞ ✁ ✝ ✕ ✖ ✆ ✏ ★ ✝ ✁ � ✄ � ✁ ✝ ★ ✡ ✁ � ✛ ✎ ✡ ☞ ✗ ✱ ✂ ✁ ✎ � ✯ ✆ ✘ � ✏ ❄ ✎ ❄ ✡ ✘ ✆ ✄ ☎ ✏ ❂ ✪ ✝ ✄ ✆ ✩ ✚ ✎ ✏ ✄ ✚ ✡ ★ ✩ ✡ ✝ ✩ ✏ ✡ 12 Fixed point theory of nonexpansive mappings -hyperbolic, convex, sequence in ✡☞✚ nonexpansive if for all ✆✞✝ The Krasnoselski-Mann iteration starting from : asymptotic regularity - defined by Browder/Petryshyn(66) for normed spaces: is -asymptotically regular if for all , ✆✞✝

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend