projector based electron transport calculations
play

Projector-based Electron Transport Calculations Panu Sam-ang - PowerPoint PPT Presentation

Projector-based Electron Transport Calculations Panu Sam-ang Advisor: Dr. Matthew Reuter Department of Applied Mathematics and Statistics Stony Brook University August 15, 2018 Outline Overview of Research Problems in Existing


  1. Projector-based Electron Transport Calculations Panu Sam-ang Advisor: Dr. Matthew Reuter Department of Applied Mathematics and Statistics Stony Brook University August 15, 2018

  2. Outline • Overview of Research • Problems in Existing Transport Calculations • Proposed Method • Software Development Figure from ref. [1]

  3. Electron Transport Through Molecular Junctions QUANTUM MESOSCOPIC PHYSICS CHEMISTRY ELECTRICAL INORGANIC ENGINEERING CHEMISTRY ORGANIC MATERIAL CHEMISTRY SCIENCE BIOLOGY Why molecular electronics? 1) Fundamental science: Explore properties of materials at molecular scale 2) Technological applications: Offer advantages over silicon-based technology • Size ê • Speed é • Assembly & recognition • New functionalities Figure from ref. [1]

  4. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000).

  5. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). molecule the metal FIG. 2. Top: Experimental I - V characteristic of a benzene- 1,4-dithiolate molecule measured by Reed et al. [1]. Bottom: Conductance of the molecule of Fig. 1 as a function of the external bias applied to the metallic contacts. metal antibonding

  6. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000).

  7. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). • S.M. Lindsay & M.A. Ratner, Adv. Mat. 19 , 23-31 (2007).

  8. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). • S.M. Lindsay & M.A. Ratner, Adv. Mat. 19 , 23-31 (2007). G (measured) G (theoretical) Molecule Ratio [nS] [nS] SH 1 95 ± 6 185 0.51 HS SH 2 19.6 ± 2 25 0.78 HS SH 3 1.6 ± 0.1 3.4 0.47 HS 4 833 ± 90 47 000 0.02 HS SH 5 2.6 ± 0.05 7.9 0.33 6 0.96 ± 0.07 2.6 0.36 7 0.28 ± 0.02 0.88 0.31 8 0.11 ± 07 0.3 0.36 9 1.9 ± 3 0.8 2.4 10 250 ± 50 143 1.74 ∼ 13 190 0.07 11 H H H H 12 0.32 ± 0.03 0.043 7.4 N N N N O O S N N N S H H H

  9. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). • S.M. Lindsay & M.A. Ratner, Adv. Mat. 19 , 23-31 (2007).

  10. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). • S.M. Lindsay & M.A. Ratner, Adv. Mat. 19 , 23-31 (2007). • A. Nitzan & M.A. Ratner, Science 300 , 1384-1389 (2003). • C. Herrmann, G.C. Solomon, J.E. Subotnik, V. Mujica & M.A. Ratner, J. Chem. Phys. 132 , 024103 (2010). • N. Di Ventra, N.D. Lang & S.T. Pantelides, Chem. Phys 281 , 189-198 (2002). • K. Stokbro, J. Taylor, M. Brandbyge, J.-L. Mozos & P. Ordejon, Comp. Mat. Sci. 27 , 151-160 (2003) • S.H. Ke, H.U. Baranger & W. Yang, J. Chem. Phys. 127 , 144107 (2007). • C. Herrmann, G.C. Solomon, J.E. Subotnik, V. Mujica & M.A. Ratner, J. Chem. Phys. 132 , 024103 (2010).

  11. Problems in Existing Transport Calculations Discrepancies between calculations and experimental data: • good qualitative agreement • but overestimation ! Evidence: • M. Di Ventra, S.T. Pantelides & N.D. Lang, Phys. Rev. Lett. 84 , 979-982 (2000). • S.M. Lindsay & M.A. Ratner, Adv. Mat. 19 , 23-31 (2007). • A. Nitzan & M.A. Ratner, Science 300 , 1384-1389 (2003). • C. Herrmann, G.C. Solomon, J.E. Subotnik, V. Mujica & M.A. Ratner, J. Chem. Phys. 132 , 024103 (2010). • N. Di Ventra, N.D. Lang & S.T. Pantelides, Chem. Phys 281 , 189-198 (2002). • K. Stokbro, J. Taylor, M. Brandbyge, J.-L. Mozos & P. Ordejon, Comp. Mat. Sci. 27 , 151-160 (2003) • S.H. Ke, H.U. Baranger & W. Yang, J. Chem. Phys. 127 , 144107 (2007). • C. Herrmann, G.C. Solomon, J.E. Subotnik, V. Mujica & M.A. Ratner, J. Chem. Phys. 132 , 024103 (2010). Speculations: - experimental limitations - inadequate treatment of electron correlation - numerical artifacts

  12. Ghost Transmission • Key quantity in electron transport is the transmission function T(E). • Herrmann and colleagues 2 carried out two types of transport calculations: “full” calculation “ghost” calculation full ghost • They saw artificially high transmission (named ghost transmission ) in the ghost system. Ghost transmission! Figure (ref.[2]) : Transmission for octasilane-dithiolate chain

  13. Electron Transport Calculations The standard approach to first-principles calculations consists of two steps: Electronic Structure Calculation of Calculation Transmission Function • Density-functional theory (DFT) • Landauer-Büttiker theory and • Output needed are non-equilibrium Green’s function - Hamiltonian matrix H (NEGF) technique - Overlap matrix S Γ L / R ( E ) = i [ Σ L / R ( E ) − Σ † L / R ( E )] L C R L V L G ( E ) = [ E I − H C − Σ L ( E ) − Σ R ( E )] − 1 H = V H V C L C R Γ L ( E ) G ( E ) Γ R ( E ) G ( E ) † � � T ( E ) = Tr V R R Figure from ref. [3]

  14. Projectors: Conventional vs. Proposed � � � N C N R N L Left Center Right X � • Use projectors to divide the system N j • Choice of projectors is important! Conventional transport calculation Proposed transport calculation • Uses Mulliken-style projectors , e.g. , • Uses real-space projectors , e.g. , � x + � + ∞ � + ∞ X X dz ′ | ⃗ c | ϕ j i ( S − 1 ) j,k h ϕ k | � N C = dx ′ dy ′ x ′ ) ⟨ ⃗ x ′ | N C = x ⟩ δ ( ⃗ x − ⃗ −∞ −∞ x − j ∈ C k { ϕ j } • { ϕ j } Depends on basis functions • Does not depend on basis functions • Results in non-Hermitian operators • Results in Hermitian operators • Causes a short circuit 4 • Does not cause a short circuit 4

  15. Implementation of Real-Space Projectors • Goal: develop software that implements real-space projectors • Slymer 3 = software package from our research group: § Acts as a work-around between the 2 steps § Can perform electron transport calculation § Can do electronic band structure calculation § Written in C++ Transport Calculations with Transport Calculations with TranSIESTA TranSIESTA T T SIESTA SIESTA Slymer Slymer Electronic Structure Calculation of Pablo Ordejón Pablo Ordejón Calculation Transmission Function Instituto de Ciencia de Materiales de Barcelona Instituto de Ciencia de Materiales de Barcelona - - CSIC, Spain CSIC, Spain , , p p T(E) H, S

  16. Details of the Calculations Transport Calculations with Transport Calculations with TranSIESTA TranSIESTA T T SIESTA SIESTA Slymer Slymer Electronic Structure Calculation of Pablo Ordejón Pablo Ordejón Calculation Transmission Function Instituto de Ciencia de Materiales de Barcelona - Instituto de Ciencia de Materiales de Barcelona - CSIC, Spain CSIC, Spain , , p p • Create the geometry of molecular • A pply projectors to H and S [Slymer] junction • Compute self-energies • Choose a basis set and the Σ L / R ( E ) = ( E S L / R , C − V L / R , C ) † g L / R , C ( E S L / R , C − V L / R , C ) exchange-correlation functional • Compute spectral densities • Output quantities: H and S Γ L / R ( E ) = i [ Σ L / R ( E ) − Σ † L / R ( E )] • Computational bottleneck -> run • Compute Green’s function on a cluster G ( E ) = [ E I − H C − Σ L ( E ) − Σ R ( E )] − 1 • Compute transmission function Γ L ( E ) G ( E ) Γ R ( E ) G ( E ) † � � T ( E ) = Tr • Compute current and conductance if desired � ∞ I = 2 e ( f L ( E ) − f R ( E )) T ( E ) dE h −∞ G = 2 e 2 � T i h i

  17. Plans to Validate Slymer • Run calculations for different combinations: molecule exchange-correlation basis set functional • meta -connected benzene • LDA a • Double-zeta a • para -connected benzene • PBE0 b • Triple-zeta b • octane-dithiolate • Quadruple-zeta b • anthracene derivatives Note: superscripts a = for prototyping, b = for produc6on • Compare results: conventional calculations vs. proposed calculations • Compare our calculations with experiments è collaboration with Ø Venkataraman Group at Columbia University Ø Pierre Darancet in Center for Nanoscale Materials at Argonne National Laboratory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend