programming derivatives of rbfs
play

Programming Derivatives of RBFs Robert Schaback - PowerPoint PPT Presentation

Programming Derivatives of RBFs Robert Schaback Georg-August-Universitt Gttingen Akademie der Wissenschaften zu Gttingen ICERM August 2017 Overview Motivation Examples Theory Remarks on Implementation Summary and Outlook Motivation


  1. Programming Derivatives of RBFs Robert Schaback Georg-August-Universität Göttingen Akademie der Wissenschaften zu Göttingen ICERM August 2017

  2. Overview Motivation Examples Theory Remarks on Implementation Summary and Outlook

  3. Motivation

  4. Motivation: Need for Derivatives

  5. Motivation: Need for Derivatives For unsymmetric collocation you have to take ∆

  6. Motivation: Need for Derivatives For unsymmetric collocation you have to take ∆ For symmetric collocation you have to take ∆ and ∆ 2

  7. Motivation: Need for Derivatives For unsymmetric collocation you have to take ∆ For symmetric collocation you have to take ∆ and ∆ 2 For divergence-free vector fields derived from kernels K you need ( ∇∇ T − ∆ · Id ) K

  8. Motivation: Need for Derivatives For unsymmetric collocation you have to take ∆ For symmetric collocation you have to take ∆ and ∆ 2 For divergence-free vector fields derived from kernels K you need ( ∇∇ T − ∆ · Id ) K Students never get derivatives right

  9. Idea: Recursion

  10. Idea: Recursion Observation: Derivatives of RBFs often are (modified) RBFs

  11. Idea: Recursion Observation: Derivatives of RBFs often are (modified) RBFs Assume RBF family { φ p ( r ) } p parametrized by p

  12. Idea: Recursion Observation: Derivatives of RBFs often are (modified) RBFs Assume RBF family { φ p ( r ) } p parametrized by p Express derivatives via φ p ( r ) , φ p − 1 ( r ) etc.

  13. Idea: Recursion Observation: Derivatives of RBFs often are (modified) RBFs Assume RBF family { φ p ( r ) } p parametrized by p Express derivatives via φ p ( r ) , φ p − 1 ( r ) etc. Observation: Strange pattern of derivative recursions

  14. Idea: Recursion Observation: Derivatives of RBFs often are (modified) RBFs Assume RBF family { φ p ( r ) } p parametrized by p Express derivatives via φ p ( r ) , φ p − 1 ( r ) etc. Observation: Strange pattern of derivative recursions Observation: The pattern comes from the f -form of RBFs

  15. Idea: Recursion on f -form

  16. Idea: Recursion on f -form √ Write φ p ( r ) = f p ( r 2 / 2 ) or φ p ( 2 s ) = f p ( s ) , s = r 2 / 2

  17. Idea: Recursion on f -form √ Write φ p ( r ) = f p ( r 2 / 2 ) or φ p ( 2 s ) = f p ( s ) , s = r 2 / 2 Well-known from Bocher-Schoenberg theory

  18. Idea: Recursion on f -form √ Write φ p ( r ) = f p ( r 2 / 2 ) or φ p ( 2 s ) = f p ( s ) , s = r 2 / 2 Well-known from Bocher-Schoenberg theory Goal: Express f p derivatives via f p − 1 , f p − 2 etc.

  19. Examples

  20. Example: Gaussian φ ( r ) = exp ( − r 2 / 2 )

  21. Example: Gaussian φ ( r ) = exp ( − r 2 / 2 ) f ( s ) = exp ( − s )

  22. Example: Gaussian φ ( r ) = exp ( − r 2 / 2 ) f ( s ) = exp ( − s ) f ′ ( s ) = − f ( s )

  23. Example: Multiquadrics φ m ( r ) = ( 1 + r 2 / 2 ) − m

  24. Example: Multiquadrics φ m ( r ) = ( 1 + r 2 / 2 ) − m f m ( s ) = ( 1 + s ) − m

  25. Example: Multiquadrics φ m ( r ) = ( 1 + r 2 / 2 ) − m f m ( s ) = ( 1 + s ) − m f ′ m ( s ) = − m f m + 1 ( s )

  26. Example: Powers φ m ( r ) = r m

  27. Example: Powers φ m ( r ) = r m √ 2 s ) m f m ( s ) = (

  28. Example: Powers φ m ( r ) = r m √ 2 s ) m f m ( s ) = ( √ √ d 2 s = 1 / 2 s ds

  29. Example: Powers φ m ( r ) = r m √ 2 s ) m f m ( s ) = ( √ √ d 2 s = 1 / 2 s ds √ √ f ′ 2 s ) m − 1 / m ( s ) = m ( 2 s = m f m − 2 ( s )

  30. Example: Thin-Plate Splines φ 2 m ( r ) = r 2 m log r

  31. Example: Thin-Plate Splines φ 2 m ( r ) = r 2 m log r √ √ 2 s ) 2 m log ( f 2 m ( s ) = ( 2 s )

  32. Example: Thin-Plate Splines φ 2 m ( r ) = r 2 m log r √ √ 2 s ) 2 m log ( f 2 m ( s ) = ( 2 s ) √ √ √ √ 2 s ) 2 m − 1 log ( f ′ 2 s ) 2 m / ( 2 s ) 2 m ( s ) = 2 m ( 2 s ) / 2 s + ( ( 2 s ) m − 1 = 2 m f 2 m − 2 ( s ) + � �� � = polynomial

  33. Example: Thin-Plate Splines φ 2 m ( r ) = r 2 m log r √ √ 2 s ) 2 m log ( f 2 m ( s ) = ( 2 s ) √ √ √ √ 2 s ) 2 m − 1 log ( f ′ 2 s ) 2 m / ( 2 s ) 2 m ( s ) = 2 m ( 2 s ) / 2 s + ( ( 2 s ) m − 1 = 2 m f 2 m − 2 ( s ) + � �� � = polynomial The polynomial part vanishes in the conditional positive definite setting

  34. Example: Thin-Plate Splines φ 2 m ( r ) = r 2 m log r √ √ 2 s ) 2 m log ( f 2 m ( s ) = ( 2 s ) √ √ √ √ 2 s ) 2 m − 1 log ( f ′ 2 s ) 2 m / ( 2 s ) 2 m ( s ) = 2 m ( 2 s ) / 2 s + ( ( 2 s ) m − 1 = 2 m f 2 m − 2 ( s ) + � �� � = polynomial The polynomial part vanishes in the conditional positive definite setting Dealing with powers is clear

  35. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r )

  36. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r ) √ √ 2 s ) ν K ν ( f ν ( s ) = ( 2 s )

  37. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r ) √ √ 2 s ) ν K ν ( f ν ( s ) = ( 2 s ) d dz ( z ν K ν ( z )) = − z ν K ν − 1 ( z )

  38. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r ) √ √ 2 s ) ν K ν ( f ν ( s ) = ( 2 s ) d dz ( z ν K ν ( z )) = − z ν K ν − 1 ( z ) √ √ √ f ′ 2 s ) ν K ν − 1 ( ν ( s ) = − ( 2 s ) / 2 s = − f ν − 1 ( s )

  39. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r ) √ √ 2 s ) ν K ν ( f ν ( s ) = ( 2 s ) d dz ( z ν K ν ( z )) = − z ν K ν − 1 ( z ) √ √ √ f ′ 2 s ) ν K ν − 1 ( ν ( s ) = − ( 2 s ) / 2 s = − f ν − 1 ( s ) This would not work without s = r 2 / 2

  40. Matérn-Sobolev Kernels φ ν ( r ) = r ν K ν ( r ) √ √ 2 s ) ν K ν ( f ν ( s ) = ( 2 s ) d dz ( z ν K ν ( z )) = − z ν K ν − 1 ( z ) √ √ √ f ′ 2 s ) ν K ν − 1 ( ν ( s ) = − ( 2 s ) / 2 s = − f ν − 1 ( s ) This would not work without s = r 2 / 2 ν = m − d / 2 ⇒ ν − 1 means m ⇒ m − 1 or d ⇒ d + 2

  41. Wendland Kernels φ d , k in C 2 k , SPD on R d , minimal degree ⌊ d / 2 ⌋ + 3 k + 1 ( 1 − r ) ℓ φ ℓ ( r ) := + � ∞ ( I φ )( r ) := t φ ( t ) dt r I k φ ⌊ d / 2 ⌋ + k + 1 ( r ) φ d , k ( r ) := √ I k φ ⌊ d / 2 ⌋ + k + 1 ( f d , k ( s ) := 2 s ) ( I φ ) ′ ( r ) = − r φ ( r ) √ √ √ f ′ 2 s I k − 1 φ ⌊ d / 2 ⌋ + k + 1 ( d , k ( s ) = − 2 s ) / 2 s √ − I k − 1 φ ⌊ ( d + 2 ) / 2 ⌋ + k − 1 + 1 ( = 2 s ) = − f d + 2 , k − 1 ( s ) This would not work without s = r 2 / 2

  42. Laplacian φ ′′ ( r ) + ( d − 1 ) φ ′ ( r ) ∆ φ ( r ) = (singular!) r f ( r 2 / 2 ) φ ( r ) = φ ′ ( r ) r f ′ ( r 2 / 2 ) = r 2 f ′′ ( r 2 / 2 ) + f ′ ( r 2 / 2 ) φ ′′ ( r ) = r 2 f ′′ ( r 2 / 2 ) + d f ′ ( r 2 / 2 ) = 2 sf ′′ ( s ) + df ′ ( s ) ∆ φ = ∆ 2 φ 4 s 2 f ( 4 ) ( s ) + 4 sdf ( 3 ) ( s ) + d 2 f ′′ ( s ) = No visible singularities in f -form Other derivatives via e.g. dx φ ( r ) = φ ′ ( r ) x d r = r f ′ ( r 2 / 2 ) x r = xf ′ ( s )

  43. Theory

  44. General Result Theorem (Dimension walk) Radial Fourier transform F d on R d implies F d + 2 f ′ p = − F d f p

  45. General Result Theorem (Dimension walk) Radial Fourier transform F d on R d implies F d + 2 f ′ p = − F d f p Closedness Assumption between { f p } p and { g q } q F d f p = g A ( d , p ) , F d g q = f B ( d , q )

  46. General Result Theorem (Dimension walk) Radial Fourier transform F d on R d implies F d + 2 f ′ p = − F d f p Closedness Assumption between { f p } p and { g q } q F d f p = g A ( d , p ) , F d g q = f B ( d , q ) Theorem: f ′ p = − F d + 2 F d f p = − f B ( d + 2 , A ( d , p ))

  47. General Result Theorem (Dimension walk) Radial Fourier transform F d on R d implies F d + 2 f ′ p = − F d f p Closedness Assumption between { f p } p and { g q } q F d f p = g A ( d , p ) , F d g q = f B ( d , q ) Theorem: f ′ p = − F d + 2 F d f p = − f B ( d + 2 , A ( d , p )) No separate derivative program needed

  48. General Result Theorem (Dimension walk) Radial Fourier transform F d on R d implies F d + 2 f ′ p = − F d f p Closedness Assumption between { f p } p and { g q } q F d f p = g A ( d , p ) , F d g q = f B ( d , q ) Theorem: f ′ p = − F d + 2 F d f p = − f B ( d + 2 , A ( d , p )) No separate derivative program needed Derivatives and dimensions may be fractional

  49. Proof of Dimension Walk Radial Fourier transform F ν for ν = ( d − 2 ) / 2: � ∞ f p ( s ) s ν H ν ( st ) ds ( F ν f p )( t ) = � ∞ 0 ( F ν f p )( t ) t ν H ν ( ts ) dt f p ( s ) = 0 ( z / 2 ) − ν J ν ( z ) ( − z 2 / 4 ) k H ν ( − z 2 / 4 ) = � ∞ = k = 0 k !Γ( k + ν + 1 ) H ′ = − H ν + 1 , d ⇒ d + 2 ν � ∞ f ′ ( F ν f p )( t ) t ν tH ′ p ( s ) = ν ( ts ) dt 0 � ∞ ( F ν f p )( t ) t ν + 1 H ′ = − ν + 1 ( ts ) dt 0 − F − 1 = ν + 1 F ν ( f p )( s ) F ν + 1 f ′ = − F ν f p p

  50. Remarks on Implementation

  51. Matrix Formulation Kernel matrix φ ( � x j − y k � 2 ) = f ( � x j − y k � 2 2 / 2 ) function dsqh=distsqh(X, Y) % X and Y are matrices with points as rows nX=length(X(:,1));nY=length(Y(:,1)); Xsh=sum((X.*X)’)/2; Ysh=sum((Y.*Y)’)/2; dsqh=repmat(Xsh’,1,nY)+repmat(Ysh,nX,1)-X*Y’;

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend