progenitors supernovae and neutron stars
play

Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa - PowerPoint PPT Presentation

Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Astrophysics, Garching Collaboration with: S. Yamada (Waseda), T. Takiwaki (Riken), K. Kotake (Fukuoka), E.


  1. Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Astrophysics, Garching Collaboration with: S. Yamada (Waseda), T. Takiwaki (Riken), K. Kotake (Fukuoka), E. Müller (MPA)

  2. Progenitor structures-1 10 9 6 silicon/oxygen shell Woosley & Heger (2007) 5 20 M ⦿ 10 8 Entropy (k/baryon) 4 Density (g/cc) silicon shell 10 7 3 iron core 2 10 6 1 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Interior Mass (solar masses) See also talk by Sukhbold and poster by Thomas Yudai Suwa, FOE 2015@NCSU 6/1/2015 2 /11

  3. Progenitor structures-2 data from Woosley & Heger (2007) 10 11 10 11 10 10 10 10 10 9 10 9 Density [g cm -3 ] Density [g cm -3 ] s12 10 8 10 8 12 M ⦿ s12 s15 15 M ⦿ s15 s20 10 7 10 7 20 M ⦿ s20 s30 30 M ⦿ s30 s40 10 6 40 M ⦿ 10 6 s40 s50 50 M ⦿ s50 s55 55 M ⦿ 10 5 s55 10 5 s80 80 M ⦿ s80 s100 s100 100 M ⦿ 10 4 10 4 0 0.5 1 1.5 2 100 1000 10000 Mass [M � ] Radius [km] pressure 1 Mass accretion rate at 300 km [M � s -1 ] s12 s15 s20 0.8 s30 s40 shock s50 0.6 P s55 s80 s100 0.4 ρ v 2 ∝ Ṁ v 0.2 0 0 200 400 600 800 1000 Time after bounce [ms] radius Yudai Suwa, FOE 2015@NCSU 6/1/2015 3 /11

  4. Explosion simulations-1: setups See Suwa et al., PASJ, 62, L49 (2010) Progenitor: 12-100 M ⦿ (Woosley & Heger 07) Suwa et al., ApJ, 738, 165 (2011) Suwa et al., ApJ, 764, 99 (2013) 2D (axial symmetry) (ZEUS-2D; Stone & Norman 92) Suwa, PASJ, 66, L1 (2014) Suwa et al., arXiv:1406.6414 MPI+OpenMP hybrid parallelized for more details Hydrodynamics+neutrino transfer ( neutrino-radiation hydrodynamics ) Isotropic di fg usion source approximation ( IDSA ) for neutrino transfer (Liebendörfer+ 09) Ray-by-ray plus approximation for multi-D transfer (Buras+ 06) EOS: Lattimer-Swesty (K=180, 220 ,375MeV) / H. Shen Yudai Suwa, FOE 2015@NCSU 6/1/2015 4 /11

  5. Explosion simulations-2: results YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414 1000 s12 s15 s20 800 s30 Shock Radius [km] s40 s50 600 s55 s80 s100 400 200 0 0 200 400 600 800 1000 1200 Time after Bounce [ms] Several progenitors lead to shock expansion No monotonic trend with ZAMS mass is found What makes di fg erence? Yudai Suwa, FOE 2015@NCSU 6/1/2015 5 /11

  6. What makes difference?: Ṁ - L ν YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414 Total Neutrino Luminosity [10 52 erg s -1 ] Burrows & Goshy (1993) 10 9 explode 8 7 WH07/s12 WH07/s15 6 WH07/s20 WH07/s30 5 WH07/s40 fail WH07/s50 4 marginal WH07/s55 3 WH07/s80 Time WH07/s100 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Mass accretion rate at 300 km [M � s -1 ] Low Ṁ and high L ν are achieved for exploding progenitors Accretion of multiple shells makes di fg erent dependence of L ν on Ṁ Yudai Suwa, FOE 2015@NCSU 6/1/2015 6 /11

  7. Critical curve and model trajectory e.g., Burrows & Goshy (1993) Murphy & Burros (2008) Nordhaus+ (2010) critical curve Hanke+ (2012) Couch (2013) Handy+ (2014) turning point Pejcha & Thompson (2012) Keshet & Balberg (2012) Janka (2012) Müller & Janka (2015) model trajectory Dolence+ (2015) Suwa+ (2014) • Semi-analytic expressions of trajectories available in Suwa et al. (2014) Yudai Suwa, FOE 2015@NCSU 6/1/2015 7 /11

  8. Code comparison Bruenn+ 2014 (Oak Rigde) Melson+ 2015 (Garching) Dolence+ 2015 (Princeton) Suwa+ 2014 (Kyoto- Tokyo-Fukuoka) Yudai Suwa, FOE 2015@NCSU 6/1/2015 8 /11

  9. P ROMETHEUS -V ERTEX C HIMERA Bruenn+ 2014 (Oak Rigde) GR correction GR correction Code comparison variable Eddington factor fm ux limited di fg usion Melson+ 2015 (Garching) ray-by-ray plus ray-by-ray plus Lattimer-Swesty EOS Lattimer-Swesty EOS explode in 2D explode in 2D 9 Luminosity of electron neutrinos [10 52 erg s -1 ] 8 7 6 5 4 3 s20; ZEUS (Suwa+ 2014) s20; CASTRO (Dolence+ 2015) 2 s20; CHIMERA (Bruenn+ 2014) s20; Prometheus (Melson+ 2015) 1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Mass accretion rate [M ⊙ s -1 ] CASTRO ZEUS Dolence+ 2015 (Princeton) Newton Newton fm ux limited di fg usion isotropic di fg usion source app. multi-D transfer ray-by-ray plus H. Shen EOS Suwa+ 2014 (Kyoto- Lattimer-Swesty EOS Tokyo-Fukuoka) NOT explode in 2D NOT explode in 2D Yudai Suwa, FOE 2015@NCSU 6/1/2015 8 /11

  10. How much do initial conditions matter? Starting from hydrostatic NSE cores 1D, GR, neutrino-radiation hydro code; Agile-IDSA (public code!) Neutrino-driven explosions are possible in 1D 4 Preliminary 2 Velocity [10 9 cm s -1 ] 1000 0 Radius [km] -2 -4 100 t pb =0ms -6 t pb =1ms t pb =5ms -8 t pb =50ms t pb =100ms -10 10 1 10 100 1000 10000 -100 -50 0 50 100 150 200 Radius [km] Time after boune [ms] YS, Müller+, in prep. See also poster by Yu Yudai Suwa, FOE 2015@NCSU 6/1/2015 9 /11

  11. Long-term simulations from PNS to NS NS consists of core and crust When a PNS (w/o crust) becomes a NS (w/ crust) ? From core collapse up to NS formation was followed with neut.- rad. hydro. simulation , for 67 s (C)NASA shock mass coordinate � 1 / 3 c ≈ Z 2 e 2 � 4 π ρ Y e x a T Ŵ k B 3 Zm u � � YS, PASJ (2014) Yudai Suwa, FOE 2015@NCSU 6/1/2015 10 /11

  12. Summary Progenitor structure is one of the most important ingredients for core-collapse supernova explosion initial condition mass accretion history We performed simulations of multi-dimensional neutrino- radiation hydrodynamics 4 of 9 models exploded Low- Ṁ and high L ν are favorable for explosion By performing further simulations, NS crust formation was reached from precollapse consistently (from supernovae to neutron stars) Yudai Suwa, FOE 2015@NCSU 6/1/2015 11 /11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend