production of pure enantiomers at high yields by
play

PRODUCTION OF PURE ENANTIOMERS AT HIGH YIELDS BY INTEGRATING - PowerPoint PPT Presentation

PRODUCTION OF PURE ENANTIOMERS AT HIGH YIELDS BY INTEGRATING CHROMATOGRAPHY, ISOMERIZATION AND MEMBRANE FILTRATION Sebastian Nimmig, Malte Kaspereit Institute of Separation Science and Technology, University Erlangen-Nrnberg PIN-NL &


  1. PRODUCTION OF PURE ENANTIOMERS AT HIGH YIELDS BY INTEGRATING CHROMATOGRAPHY, ISOMERIZATION AND MEMBRANE FILTRATION Sebastian Nimmig, Malte Kaspereit Institute of Separation Science and Technology, University Erlangen-Nürnberg PIN-NL & NL-GUTS 9 April 2014 1

  2. Motivation and objectives 2

  3. Enantiomers • Stereoisomers ("mirror images") a a C C d d b b c c • Basically identical physico-chemical properties • Often produced as racemate (50/50 mixture) • Usually only one enantiomer has the desired physiological effect Separation?  Chromatography • Motivation 3

  4. Separation of enantiomers • Yield limited to 50% only (conventional approach) E1 E1: Enantiomer 1 (product) Single-column E1+E2 E2: Enantiomer 2 Chromatography E2 Reaction required to convert E2 into E1+E2  isomerization • • Increase yield to 100% by recycling E2 solvent Single-column E1 (product) fresh feed Chromatography E2 (recycle) E1 E2 Recycle always diluted! [1] Bechtold et al ., J Biotechnology 124 (2006) 146-162 Motivation 4

  5. • Inhibit dilution by solvent removal (here: nanofiltration) solvent Single-column E1 (product) fresh feed Chromatography E2 (recycle) Membrane- solvent E2 E1 filtration Challenges • Design specifications • Required parameters and models • Analysis and process behaviour • Fully continuous implementation • Experimental validation Objectives 5

  6. Theoretical investigations I 6

  7. Shortcut process design [2] • Reproduce a given chromatogram (simulated or experimental) in each cycle c 1 Concentration c / g·L -1 • Main design parameters: c 2  Feed flow rate Q feed  Permeate flow rate Q perm  Chrom. flow rate Q chrom  Injection width Δ t in j  Fractionation times t 1 , t 2 , t 3 t 1 t 1 t 1 3 =t 2 1 t 2 t 2 3 =t 3 1 t 3 t 3 3 =t k+1 1 2 2 2 1 Time t / min [2] Nimmig, Kaspereit, Chem Eng Process 67 (2013) 89– 98 Theoretical investigations I 7

  8. Shortcut process design [2] C • Simple explicit equations R M • Easy performance prediction SC / L·g -1 100 2.5 50 Productivity PR / g·h -1 ·L -1 Shortcut R=1 80 Shortcut R<1 2 40 Yield Y / % Solvent consumption 60 1.5 30 40 1 20 20 0.5 10 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Membrane rejection R / - Membrane rejection R / - Membrane rejection R / - Theoretical investigations I 8

  9. Detailed process design  Chromatography : Equilibrium dispersive model C  Reaction: R First order kinetics, CSTR  Nanofiltration: M Simplified solution diffusion model • Implementation in MatLab Theoretical investigations I 9

  10. Detailed process design • Fully continous connection • Performance prediction: SC / L·g -1 100 80 Productivity PR / g·h -1 ·L -1 40mL 2 120mL 80 60 200mL 1.5 Yield Y / % Solvent consumption 60 280mL 40 360mL 1 40 440mL 20 0.5 20 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Membrane rejection R / - Membrane rejection R / - Membrane rejection R / - Theoretical investigations I 10

  11. Experimental validation 11

  12. C UV UV PI PI R TI F TI F M Experimental validation 12

  13. Experiment 1 – Design via detailed simulation 0.1 Simulation Concentration c out / g·L -1 1 Concentration c / g·L -1 Experiment 1 0.08 0.1 0.06 0.04 0.05 0.02 0 0 15 20 25 30 35 5 10 15 20 Time t / min Fraction # 100 Simulation Concentration c out / g·L -1 1 0.2 Experiment 1 Purity PUR / % 95 0.15 90 0.1 85 0.05 0 80 0 100 200 300 0 5 10 15 20 Time t / min Fraction # Experimental validation 13

  14. Experiment 2 – Design via shortcut method 0.25 0.3 Design Concentration c out / g·L -1 Concentration c / g·L -1 Experiment 2 0.2 0.2 0.15 0.1 0.1 0.05 0 0 20 30 40 0 5 10 15 20 Time t / min Fraction # 0.4 100 Experiment 2 Concentration c out / g·L -1 1 90 0.3 Purity PUR / % 80 0.2 70 0.1 60 0 50 0 100 200 300 0 0 5 10 15 20 Time t / min Fraction # Experimental validation 14

  15. Theoretical investigations II 15

  16. Unit Arrangements Different setups - different performance? 1 2 3 C C C M R M R M R 4 5 6 C C C R M R M R M R: Reactor C: Column M: Membrane : Fresh Feed Theoretical investigations II 16

  17. Perfomance prediction - Yield Da = 0.3 Da = 10 100 100 90 90 Best choice: 80 80 4 70 70 C Yield Y / % Yield Y / % 60 60 R M 50 50 40 40 30 30 20 20 0.4 0.6 0.8 1 0.4 0.6 0.8 1 Membrane rejection R / - Membrane rejection R / - Var 1 Var 3 Var 5 Batch Var 2 Var 4 Var 6 Theoretical investigations II 17

  18. Perfomance prediction - Productivity Da = 0.3 Da = 10 3 3 Best choice: Productivity PR / g·h -1 ·L -1 Productivity PR / g·h -1 ·L -1 4 2.5 2.5 C R M 2 2 1.5 1.5 0.4 0.6 0.8 1 0.4 0.6 0.8 1 Membrane rejection R / - Membrane rejection R / - Var 1 Var 3 Var 5 Batch Var 2 Var 4 Var 6 Theoretical investigations II 18

  19. Further extensions of concept? 19

  20. heating reaction jacket chamber stirrer membrane Further extensions of concept 20

  21. On-column protein refolding SolvR N Single-column Native protein D Chromatography X ( N ) Undesired Membrane reactor conformations SolvD ( X ) D X Denatured protein ( D ) Solvent Further extensions of concept 21

  22. Summary • Proposed concept capable of significantly improving yield and performance • Shortcut methods developed for basic design, full model for detailed design • Performance limited mainly by membrane rejection • Process setup influences performance • First successful realization of such process in directly coupled operation Outlook • Potential application to industrial relevant compunds? Summary 22

  23. Thank you for your attention! 23

  24. Chlorthaidone racemization • Nearly insolubile in Water • Increasing solubility in MeOH/H 2 O • MW =338 g/mol • Kinetics known as function of pH-value and temperature [3] [3] J. G. Palacios, B. Kramer, A. Kienle, M. Kaspereit, J Chromatogr A 1218 (2011) 2232- 2239 Racemization under acid conditions Racemization scheme 24

  25. Reactor concentration behavior for different Volumes V R =1mL V R =1000mL Detailed process design 25

  26. I B F E P • Membran  Reactor design I N Reaktor Membranmodul • Membrane unit acts as CSTR (residence time function) Membran behavior 26

  27. Parameter determination - Nanofiltration Pure water experiments (k1) Batch concentration experiments (k2) 500 600 8.30 bar 450 550 6.38 bar 2 ] Permeate flux for pure solvent [mL/min/m 4.80 bar 400 500 2 ] Permeate flux [mL/min/m 350 450 300 400 250 350 200 300 150 250 100 200 50 150 0 100 0 2 4 6 8 0 0.1 0.2 0.3 0.4 Pressure ∆ p [bar] Concentration c CTD [g/L] Experimental characterization 27

  28. • Parameter determination - Racemization Concentration [g/L] ln(c*) Time [min] Time [min] Experimental characterization 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend