problem with cargo coupling and
play

Problem with Cargo Coupling and Synchronization Constraints Magnus - PowerPoint PPT Presentation

A Branch-and-Price Method for a Ship Routing and Scheduling Problem with Cargo Coupling and Synchronization Constraints Magnus Stlhane Henrik Andersson Norwegian University of Science and Technology Outline Background and motivation


  1. A Branch-and-Price Method for a Ship Routing and Scheduling Problem with Cargo Coupling and Synchronization Constraints Magnus Stålhane Henrik Andersson Norwegian University of Science and Technology

  2. Outline • Background and motivation • Path-flow models • Solution approach • Computational study • Conclusions

  3. Tramp shipping • Contracts of affreightment – Pickup and delivery ports – Specified quantity – Time windows • Spot market for optional cargoes • Heterogeneous fleet – Capacity – Initial position – Cost structure – Speed – Cargo compatibility • Maximize profit Background and motivation

  4. Project shipping • A special segment of tramp shipping • Unique cargoes transported on a one-time basis – Parts of a process facility, yachts, train sets • Special stowage challenges – Shape, stability, sea fastening, weight and lifting – Engineering unit in order to calculate the possibility of transporting the cargoes • Cargo coupling and synchronization Background and motivation

  5. Cargo coupling and synchronization • Cargo coupling – The shipping company cannot transport a cargo unless other parts of the same order are transported as well, even though these parts may have different origins • Synchronization – The different parts of an order require synchronized delivery within some time window – Expensive equipment, storage problems Background and motivation

  6. Project shipping - example Spot Spot Time buffer Spot Background and motivation

  7. Project shipping Some pictures

  8. Optimization Days / May 10 - 12 2010

  9. Project shipping - summary • Heterogeneous fleet • Cargoes – Mandatory and optional – Time windows – Coupled – Synchronized deliveries Background and motivation

  10. Path flow models

  11. Paths • A path is a sequence of pickups and deliveries • Capacity never violated • Pickup visited before the corresponding delivery • At least one feasible schedule exists (with respect to time windows) Path flow models

  12. Path flow model 1 ∑ ∑ max z = P y vr vr ∈ ∈ v V r R v ∑ ∑ ∈ A y = 1 i N Mandatory cargoes ivr vr C ∈ ∈ v V r R v ∑ ∑ ≤ ∈ A y 1 i N Optional cargoes ivr vr O ∈ ∈ v V r R v ∑ ∈ y = 1 v V Convexity vr ∈ r R v ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vr N K K K ∈ ∈ v V r R v ( ) ∑ ≥ ∈ ∈ t t + T + T + T y T i , j N , v V , Time i - jv iv ijv iv vr ∈ r R ijv ≤ ≤ ∈ ∈ T A y t T A y i N , v V , Time windows ivr ivr ivr vr iv ivr vr ( ) ∑ S S ≤ ≤ ∈ ∈ T t t T N S , i , j N Synchroniz ation - N iv jv N S S S S ∈ v V { } ∈ ∈ ∈ y 0 , 1 v V , r R vr v { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  13. Path flow model 1 ∑ ∑ max z = P y vr vr ∈ ∈ v V r R v ∑ ∑ ∈ A y = 1 i N Mandatory cargoes ivr vr C ∈ ∈ v V r R v ∑ ∑ ≤ ∈ A y 1 i N Optional cargoes ivr vr O ∈ ∈ v V r R v ∑ ∈ y = 1 v V Convexity vr ∈ r R v ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vr N K K K ∈ ∈ v V r R v ( ) ∑ ≥ ∈ ∈ t t + T + T + T y T i , j N , v V , Time i - jv iv ijv iv vr ∈ r R ijv ≤ ≤ ∈ ∈ T A y t T A y i N , v V , Time windows ivr ivr ivr vr iv ivr vr ( ) ∑ S S ≤ ≤ ∈ ∈ T t t T N S , i , j N Synchroniz ation - N iv jv N S S S S ∈ v V { } ∈ ∈ ∈ y 0 , 1 v V , r R vr v { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  14. Path flow model 1 ∑ ∑ max z = P y vr vr ∈ ∈ v V r R v ∑ ∑ ∈ A y = 1 i N Mandatory cargoes ivr vr C ∈ ∈ v V r R v ∑ ∑ ≤ ∈ A y 1 i N Optional cargoes ivr vr O ∈ ∈ v V r R v ∑ ∈ y = 1 v V Convexity vr ∈ r R v ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vr N K K K ∈ ∈ v V r R v ( ) ∑ ≥ ∈ ∈ t t + T + T + T y T i , j N , v V , Time i - jv iv ijv iv vr ∈ r R ijv ≤ ≤ ∈ ∈ T A y t T A y i N , v V , Time windows ivr ivr ivr vr iv ivr vr ( ) ∑ S S ≤ ≤ ∈ ∈ T t t T N S , i , j N Synchroniz ation - N iv jv N S S S S ∈ v V { } ∈ ∈ ∈ y 0 , 1 v V , r R vr v { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  15. Schedule • A schedule for a given path gives the exact time for start of service at each node on the path Path flow models

  16. Path flow model 2 ∑ ∑ max z = P y vr vrw ∈ ∈ v V r R v ∑ ∑∑ ∈ A y = 1 i N Mandatory cargoes ivr vrw C ∈ ∈ ∈ v V r R w W v r ∑ ∑∑ ≤ ∈ A y 1 i N Optional cargoes ivr vrw O ∈ ∈ ∈ v V r R w W v r ∑∑ ∈ y = 1 v V Convexity vrw ∈ ∈ r R w W v r ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vrw N K K K ∈ ∈ v V r R v ( ) ∑ ∑∑ S S ≤ ≤ ∈ ∈ T T T y T N S , i , j N Synchroniz ation - N ivrw jvrw vrw N S S S S ∈ ∈ ∈ v V r R w W v r ∑ { } ∈ ∈ ∈ y 0 , 1 v V , r R vrw v ∈ w W r ≥ ∈ ∈ ∈ y 0 v V , r R , w W vrw v r { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  17. Path flow model 2 ∑ ∑ max z = P y vr vrw ∈ ∈ v V r R v ∑ ∑∑ ∈ A y = 1 i N Mandatory cargoes ivr vrw C ∈ ∈ ∈ v V r R w W v r ∑ ∑∑ ≤ ∈ A y 1 i N Optional cargoes ivr vrw O ∈ ∈ ∈ v V r R w W v r ∑∑ ∈ y = 1 v V Convexity vrw ∈ ∈ r R w W v r ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vrw N K K K ∈ ∈ v V r R v ( ) ∑ ∑∑ S S ≤ ≤ ∈ ∈ T T T y T N S , i , j N Synchroniz ation - N ivrw jvrw vrw N S S S S ∈ ∈ ∈ v V r R w W v r ∑ { } ∈ ∈ ∈ y 0 , 1 v V , r R vrw v ∈ w W r ≥ ∈ ∈ ∈ y 0 v V , r R , w W vrw v r { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  18. Path flow model 2 ∑ ∑ max z = P y vr vrw ∈ ∈ v V r R v ∑ ∑∑ ∈ A y = 1 i N Mandatory cargoes ivr vrw C ∈ ∈ ∈ v V r R w W v r ∑ ∑∑ ≤ ∈ A y 1 i N Optional cargoes ivr vrw O ∈ ∈ ∈ v V r R w W v r ∑∑ ∈ y = 1 v V Convexity vrw ∈ ∈ r R w W v r ∑ ∑ ∈ ∈ A y = w i N , N K Coupled cargoes ivr vrw N K K K ∈ ∈ v V r R v ( ) ∑ ∑∑ S S ≤ ≤ ∈ ∈ T T T y T N S , i , j N Synchroniz ation - N ivrw jvrw vrw N S S S S ∈ ∈ ∈ v V r R w W v r ∑ { } ∈ ∈ ∈ y 0 , 1 v V , r R vrw v ∈ w W r ≥ ∈ ∈ ∈ y 0 v V , r R , w W vrw v r { } ∈ ∈ w 0 , 1 N K N K K Path flow models

  19. Model comparison Path flow formulation 1 Path flow formulation 2 • One column per path • Many columns per path • Weaker LP-bound • Stronger LP-Bound • Duals related to nodes and • Duals related to nodes and arcs in the subproblems visiting times in the subproblems Path flow models

  20. Solution Approach

  21. Solution Approach • A priori column generation (PF1) – Andersson et. al, 2011 Ship routing and scheduling with cargo coupling and synchronization constraints. Computers & Industrial Engineering 61(4) p. 1107 – 1116. • Branch-and-price (PF1 and PF2) – Dynamic generation of columns • Elementary shortest path problems with resource constraints • Solved by Dynamic Programming Solution Approach

  22. Subproblem • Defined on a graph 𝐻 𝑤 = (𝑂 𝑤 , 𝐵 𝑤 ) – 𝑂 𝑤 consists of all pickup and delivery nodes that ship 𝑤 may visit – 𝐵 𝑤 consists of all arcs that ship 𝑤 can traverse • Assumptions – Triangle inequality holds for both costs and travel times Solution Approach

  23. Pricing problem PF1 𝑛𝑏𝑦 𝑠∈𝑆 𝑤 = 𝑒 𝑗𝑘𝑤 𝑗,𝑘 ∈𝑠 Solution Approach

  24. Pricing problem PF2 𝑛𝑏𝑦 𝑠∈𝑆 𝑤 = 𝑒 𝑗𝑘𝑤 + 𝜐(𝑠) 𝑗,𝑘 ∈𝑠 Solution Approach

  25. Calculating optimal schedule 𝜐 𝑠 = max 𝜀 𝑗 𝑢 𝑗𝑤 𝑗,𝑘 ∈𝑠 subject to 𝑢 𝑗𝑤 + 𝑈 𝑗𝑘𝑤 − 𝑢 𝑘𝑤 ≤ 0, ∀ 𝑗, 𝑘 ∈ 𝑠 𝑈 𝑗 ≤ 𝑢 𝑗𝑤 ≤ 𝑈 𝑗 ∀ 𝑗, 𝑘 ∈ 𝑠 Cannot be calculated exactly until path is completed Solution Approach

  26. Dominance for PDPTW • Røpke and Cordeau (2009) • Label 𝑀 1 dominates 𝑀 2 if: η 𝑀 1 = η 𝑀 2 Same node 𝑢 𝑀 1 ≤ 𝑢 𝑀 2 Less time 𝑑 𝑀 1 ≤ 𝑑 𝑀 2 Less cost 𝑊 𝑀 1 ⊆ 𝑊 𝑀 2 Subset of cargoes picked up 𝑃 𝑀 1 ⊆ 𝑃 𝑀 2 Subset of cargoes onboard Solution Approach

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend