prime numbers determinism and pseudorandomness l
play

Prime numbers, Determinism and Pseudorandomness L -estimation of - PowerPoint PPT Presentation

Prime numbers, Determinism and Pseudorandomness L -estimation of Generalized Thue-Morse Trigonometric Polynomials and Dynamical maximization Aihua Fan (Amiens/Wuhan) J org Schmeling (Lund) and Weixiao Shen (Shanghai) CIRM, 5 November 2019


  1. Prime numbers, Determinism and Pseudorandomness L ∞ -estimation of Generalized Thue-Morse Trigonometric Polynomials and Dynamical maximization Aihua Fan (Amiens/Wuhan) J¨ org Schmeling (Lund) and Weixiao Shen (Shanghai) CIRM, 5 November 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 1 / 32

  2. Outline Problems 1 Known facts 2 Ergodic maximization 3 Theory of q -Sturmian measures 4 Sturmian conditions 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 2 / 32

  3. Problems Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 3 / 32

  4. Problems Digital sum function q ≥ 2: integer. q -expansion of n ∈ N : ∑ ϵ j q j . n = finite (0 ≤ ϵ j < q ). Digital sum: ∑ S q ( n ) = ϵ j . finite q -additivity: ∀ 0 ≤ n < q k S q ( mq k + n ) = S q ( mq k ) + S q ( n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 4 / 32

  5. Problems Generalized Thue-Morse sequences Definition t ( q , c ) := t ( c ) := e 2 π ic · S q ( n ) , ( q ≥ 2; c ∈ [0 , 1)) . n n Thue-Morse sequence ( q = 2 , c = 1 / 2): ( − 1) S 2 ( n ) + / − / − + / − + + − / − + + − + − − + / · · · (Key property) q -multiplicative function f : N → C : f ( mq t + n ) = f ( mq t ) f ( n ) . ∀ n < q t , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 5 / 32

  6. Problems Generalized Thue-Morse Trigonometric Polynomials (Generalized) Thue-Morse trigonometric polynomials N − 1 σ ( q , c ) ( x ) := σ ( c ) t ( c ) ∑ n e 2 π inx . N ( x ) := N n =0 Gelfond (1968): For q = 2 , c = 1 / 2, log 3 ∥ σ (2 , 1 / 2) log 4 ) , ∥ ∞ = O ( N N where log 3 / log 4 is best possible ( very nice proof! ). Problem : How to estimate the norms ∥ σ ( c ) N ∥ p (1 ≤ p ≤ ∞ ) ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 6 / 32

  7. Problems Gelfond integers: Motivation I Let m , p , z , a , b be integers with m ≥ 2 , p ≥ 2 , z ≥ 2. Define T 0 ( x ) = # { n ≤ x : S q ( n ) = a mod p , n = b mod m } ; p z ̸ | n } T 1 ( x ) = # { n ≤ x : S q ( n ) = a mod p , . Theorem (Gelfond 1968) If ( p , q − 1) = 1 , there exists 0 < λ < 1 independent from m , a , b such that T 0 ( x ) = x mp + O ( x λ ) . λ =? If p is prime, there exists 0 < λ 1 < 1 such that x p ζ ( z ) + O ( x λ 1 ) . T 1 ( x ) = λ 1 =? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 7 / 32

  8. Problems Good weights-Davenport exponent:Motivation II The Davenport exponent of ( w n ), denoted H (( w n )), is the best h > 0 such that � N − 1 � � � = O h ( N / log h N ) . � ∑ w n e 2 π int sup � � � � t ∈ [0 , 1) � n =0 Theorem (Fan 2017) If ( w n ) ∈ ℓ ∞ with H (( w n )) > 1 2 , then it is L 1 -good for a.e. convergence. Actually, for any MPDS ( X , B , ν, T ) and and f ∈ L 1 ( ν ), we have ν -a.e. N − 1 1 ∑ w n f ( T n x ) = 0 . lim N N →∞ n =0 Sarnak: M¨ obius weight; El Abdalaoui et al: H > 1. 1 ∑ N os-LeVeque (1965): lim N 1 Proof based on Davenport-Erd¨ n =1 ξ n = 0 a.s. 2 N ∑ ∥ ξ 1 + ··· + ξ n ∥ 2 if ∥ ξ n ∥ ∞ = O (1) , < ∞ . 2 n 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 8 / 32

  9. Problems Very good weights-Gelfond exponent: Motivation II The Gelfond exponent of ( w n ), denoted D (( w n )), is the best d > 0 such that � n 0 + N − 1 � � � ∑ w n e 2 π int � = O d ( N d ) . sup sup � � � � n 0 ≥ 0 t ∈ [0 , 1) � n = n 0 Theorem (Fan 2017) Suppose ( w n ) ∈ ℓ ∞ and D := D (( w n )) < 1. Let ( X , B , ν, T ) be a MPDS and f ∈ L 2 ( ν ). Then ν -a.e. N − 1 ∑ w n f ( T n x ) = o ( N D (log N ) 2 (log log N ) 1+ ϵ ) . n =0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 9 / 32

  10. Problems Problems Problems to which we get answers: 1 Find the best exponent γ ( q , c ) := γ ( c ) for which ∥ σ ( c ) N ∥ ∞ = O ( N γ ( c ) ) . 2 (Multifractally ) analyze the size of the sets { x ∈ R : | σ ( c ) q n ( x ) | ∼ q n α } , α ∈ R . Observation. √ ∥ σ ( c ) N ∥ ∞ ≥ ∥ σ ( c ) N ∥ 2 = N , so γ ( c ) ≥ 1 / 2 . It is also not difficult to show γ ( c ) < 1. γ (1 / 2) = log 3 log 4 , the only known case (Gelfond). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 10 / 32

  11. Known facts Known facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 11 / 32

  12. Known facts About γ ( q , c ), c ̸ = 0 1 2 ≤ γ ( q , c ) < 1. Mauduit-Rivat-Sarkozy (2017): γ (2 , c ) ≤ π 2 ∥ c ∥ 20 log 2 . Fan-Koniezny (2018): Gowers uniform norms Assume f : N → { z ∈ C , | z | = 1 } be q -multiplicative.Then ∥ f ∥ U s ≪ ∥ f ∥ τ s ∀ s ≥ 2 , ∃ τ s > 0 , U 1 . So, γ ( q , c ) < 1 implies: ∀ P ∈ R [ x ], ∃ γ ′ < 1. t ( q , c ) ∥ ∑ N − 1 e 2 π iP ( n ) x ∥ ∞ = O ( N γ ′ ). n 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 12 / 32

  13. Known facts Subsequences of TM sequence Theorem (Mauduit-Rivat, 2010/2009) For any α ∈ (0 , 1) , there exists σ ( α ) > 0 such that e 2 π i α S 2 ( p ) ≪ N 1 − σ ( α ) . ∑ p ≤ N , p ∈P For any α ∈ (0 , 1) , there exists c ( α ) > 0 such that e 2 π i α S 2 ( n 2 ) ≪ N 1 − c ( α ) (1 + log log N ) 5 . ∑ n ≤ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 13 / 32

  14. Ergodic maximization Ergodic maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 14 / 32

  15. Ergodic maximization Dynamical interpretation 1 1 1 e 2 π ic ∑ m − 1 j =0 a j e 2 π i ∑ m − 1 j =0 a j 2 j x . σ ( c ) ∑ ∑ ∑ 2 m ( x ) = · · · a 0 =0 a 1 =0 a m − 1 =0 m − 1 ( 1 + e 2 π i ( c +2 j x ) ) ∏ = j =0 m − 1 | σ ( c ) ∏ 2 m ( x ) | = 2 m | cos( π (2 j x + c )) | . j =0 Let f c ( x ) = log | cos( π ( x + c )) | and let T ( x ) = 2 x mod 1 . Then m − 1 1 2 m − 1 ( x ) | = log 2 + 1 m log | σ ( c ) ∑ f c ( T j ( x )) . m . . . . . . . . . . . . . . . . . . . . j =0 . . . . . . . . . . . . . . . . . . . . November 5, 2019 15 / 32

  16. Ergodic maximization For q ≥ 2, we have Tx = qx mod 1 and � � sin π q ( x + c ) � � f c ( x ) = log � . � � q sin π ( x + c ) � Figure: The graph of f 0 on the interval [ − 1 / q , 1 − 1 / q ], here q = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 16 / 32

  17. Ergodic maximization Ergodic maximization Observation: f c is upper semi-continuous. M : the set of all T -invariant Borel probability measures on T = R / Z . We have {∫ } β ( c ) = sup f c d µ : µ ∈ M . By Birkhorff Ergodic Theorem, γ ( c ) ≥ 1 + β ( c ) log q . Fact. We actually have equality. (Conze-Guivarc’h unpublished , Jenkinson) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 17 / 32

  18. Ergodic maximization Ergodic maximization-general setting Let T : M → M be a (topological) dynamical system. Let f : M → R be a measurable function. Ergodic optimization studies the quantity {∫ } sup fd µ : µ ∈ M T . M A probablity measure is called a maximizing measure for ( T , f ) if it attains the supremum. Ma˜ n´ e, Conze-Guivarc’h, Bousch, Jenkinson, Contreras et al: mostly in the case that T is the doubling map on T and f is Lipschitz. Problem Maximizing mesaure (Existence? Uniquenee? Kind?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 5, 2019 18 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend