predicate abstraction for dense real time systems
play

Predicate Abstraction for Dense Real-Time Systems oller 1 , Harald - PowerPoint PPT Presentation

Predicate Abstraction for Dense Real-Time Systems oller 1 , Harald Rue 2 , Maria Sorea 2 Oliver M 2 SRI International BRICS 1 Arhus, Denmark Menlo Park, California, USA { ruess,sorea } @csl.sri.com omoeller@brics.dk 1 O LIVER M 7


  1. Predicate Abstraction for Dense Real-Time Systems oller 1 , Harald Rueß 2 , Maria Sorea 2 Oliver M¨ 2 SRI International BRICS 1 ª Arhus, Denmark Menlo Park, California, USA { ruess,sorea } @csl.sri.com omoeller@brics.dk 1 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  2. Outline 1 Framework Timed systems Propositional µ -calculus 2 Predicate abstraction of timed systems 3 Restricted delay steps 4 Completeness of Refinement Algorithm 5 Small Example 2 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  3. Timed Systems Timing constraints Γ , propositional Symbols A Timed System S = � L, P, C, → , l 0 , I � x := 0 l 0 y ≤ 1 x := 0 y > x y := 0 x > y l 1 l 2 Semantics as transition system M = � L × V C , P, ⇒ , ( l 0 , ν 0 ) � with non-zenoness assumption: if trace infinite, sum over all delays is ∞ 3 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  4. Clock Regions Given: S , C , ˜ c Finite partition of the infinite state space Clock region: X C ⊆ V C s.t. for all χ ∈ Constr ( c ) and for any two ν, ν ′ ∈ X C it is the case that ν | ≈ χ if and only if ν ′ | ≈ χ ν 1 ≡ S ν 2 4 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  5. Propositional Next-Free µ -Calculus Syntax: ϕ := p | ∀ ( ϕ 1 Uϕ 2 ) | ∃ ( ϕ 1 Uϕ 2 ) | Z | µZ.ϕ | ¬ ϕ | ϕ ∧ ϕ | tt ] M Semantics: [ [ ϕ ] ϑ . . . set of states for which ϕ holds Intuitively, an existential (strong) until formula ∃ ( ϕ 1 Uϕ 2 ) holds in some states s iff ϕ 1 holds on some path from s until ϕ 2 holds. def ] M [ [ ∃ ( ϕ 1 Uϕ 2 )] = ϑ ] M { s 0 ∈ S | there exists a path τ = ( s 0 ⇒ s 1 ⇒ . . . ) , s.t. s i ∈ [ [ ϕ 2 ] ϑ ] M for some i ≥ 0 , and for all 0 ≤ j < i , s j ∈ [ [ ϕ 1 ] ϑ } 5 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  6. Model Checking Given: M , ϕ ? ] M → Yes/No Model checking problem: l 0 ∈ [ [ ϕ ] Finite quotient for timed systems: region construction Our approach: successive refinements of finite approximations 6 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  7. Abstract Interpretation: Galois Connections P A ( Q A , ⊑ A ) abstract α ( P ) system ( Q A , ⊑ A ) ( Q , ⊑ ) concrete γ α system γ ( P A ) α : Q → Q A abstraction P γ : Q A → Q concretization ( Q , ⊑ ) Essence: connection of 2 lattice structures Problems: stability and self-loops 7 7 A PRIL 2002 O LIVER M ¨ OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  8. Predicate Abstraction of Timed Systems Abstraction Predicates with respect to a given clock set C formula with the set of free variables in C set of abstractions predicates Ψ = { ψ 0 , . . . , ψ n − 1 } Abstraction function Concretization function α : V C → B n γ : B n → ℘ ( V C ) γ ( b ) := { ν ∈ V C | � n − 1 i =0 ψ i ν ≡ b ( i ) } α ( ν )( i ) := ψ i ν 8 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  9. Over-/Under-Approximation Given: M , Ψ Over-approximation of M : M + Ψ = � S A , P, ⇒ + , s A 0 � Under-approximation of M : M − Ψ = � S A , P, ⇒ − , s A 0 � S A := L × B n ( l, b ) ⇒ + ( l ′ , b ′ ) iff ∃ ν ∈ γ ( b ) . ∃ ν ′ ∈ γ ( b ′ ) . ( l, ν ) ⇒ ( l ′ , ν ′ ) ( l, b ) ⇒ − ( l ′ , b ′ ) iff ∀ ν ∈ γ ( b ) . ∃ ν ′ ∈ γ ( b ′ ) . ( l, ν ) ⇒ ( l ′ , ν ′ ) s A 0 := ( l 0 , b 0 ) , where b 0 ( i ) = 1 if ψ i ν 0 and 0 otherwise. ⇒ − ⊆ ⇒ + 9 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  10. Over-/Under-Approximation – Example Ψ = { ψ } , where ψ ≡ x > y l 0 , ¬ ψ l 0 , ¬ ψ l 0 , ψ l 0 , ψ l 1 , ¬ ψ l 1 , ¬ ψ l 1 , ψ l 1 , ψ l 2 , ¬ ψ l 2 , ¬ ψ l 2 , ψ l 2 , ψ a: Over-Approximation b: Under-Approximation 10 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  11. Example for Abstraction l 0 x = 1 l 1 x ≤ 1 We want to verify: ϕ = ∀ ( tt Uat l 1 ) Abstraction predicates: { x = 0 , x < 1 , x = 1 } Assume the following sequence in the concrete trace: 1 / 2 1 / 4 1 / 4 true ( l 0 , x = 0) ⇒ ( l 0 , x = 1 / 2) ⇒ ( l 0 , x = 3 / 4) ⇒ ( l 0 , x = 1) ⇒ ( l 1 , x = 1) Abstraction yields (only a fragment is illustrated): l 0 , ψ 0 ψ 1 ψ 2 l 0 , ¬ ψ 0 ψ 1 ¬ ψ 2 l 0 , ¬ ψ 0 ¬ ψ 1 ψ 2 Problem: spurious self-loop 11 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  12. Modified Semantics: Restricted Delay Step Given: S , C , ˜ c δ A delay step ( l, ν ) − → ( l, ( ν + δ )) is a restricted delay step iff ∃ x ∈ C. ∃ k ∈ { 0 , . . . , c } . ν ( x ) = k ∨ ( ν ( x ) < k ∧ ν ( x ) + δ ≥ k ) Restricted transition relation: ⇒ R ⊆ ( L, V C ) × ( L, V C ) The second delay step in the previous trace is disallowed: ( l 0 , x = 0) ⇒ ( l 0 , x = 1 / 2) �⇒ ( l 0 , x = 3 / 4) ⇒ ( l 0 , x = 1) ⇒ ( l 1 , x = 1) Theorem: ] M R ] M [ [ ϕ ] = [ [ ϕ ] ϑ ϑ 12 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  13. Predicate Abstracted Semantics M σ S A [ [ tt ] ] Ψ := ϑ { ( l, b ) ∈ S A | p ∈ P ( l ) } M σ [ [ p ] ] Ψ := ϑ M σ M σ M σ [ [ ϕ 1 ∧ ϕ 2 ] ] := [ [ ϕ 1 ] ] ∩ [ [ ϕ 2 ] ] Ψ Ψ Ψ ϑ ϑ ϑ S A \ [ M ¯ M σ σ [ [ ¬ ϕ ] ] := [ ϕ ] ] Ψ Ψ ϑ ϑ { s 0 ∈ S A | there exists a path τ = ( s 0 ⇒ σ s 1 ⇒ σ s 1 . . . ) , M σ [ [ ∃ ( ϕ 1 Uϕ 2 )] ] := Ψ ϑ M σ s.t. s i ∈ [ [ ϕ 2 ] ] for some i ≥ 0 , and Ψ ϑ M σ for all 0 ≤ j < i , s j ∈ [ [ ϕ 1 ] ] Ψ ϑ { s 0 ∈ S A | for every path τ = ( s 0 ⇒ ¯ σ . . . ) , M σ σ s 1 ⇒ ¯ [ [ ∀ ( ϕ 1 Uϕ 2 )] ] Ψ := ϑ M σ there exists i ≥ 0 s.t. s i ∈ [ [ ϕ 2 ] ] Ψ , and ϑ M σ for all 0 ≤ j < i , s j ∈ [ [ ϕ 1 ] ] Ψ } ϑ M σ [ [ Z ] ] Ψ := ϑ ( Z ) ϑ ∩{ S ′ ∈ S A | [ M σ M σ ϑ [ Z := S ′ ] ⊆ S ′ } [ [ µZ.ϕ ] ] Ψ := [ ϕ ] ] Ψ ϑ 13 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  14. Soundness & Completeness M = � S C , P, ⇒ , s C Given: 0 � a transition system Ψ a set of predicates Ψ , M − M + the over-/under-approximations Ψ ] M ⊆ γ ([ ] M − ] M + γ ([ [ ϕ ] Ψ ) ⊆ [ [ ϕ ] [ ϕ ] Ψ ) Theorem: 14 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  15. Soundness & Completeness M = � S C , P, ⇒ , s C Given: 0 � a transition system Ψ a set of predicates Ψ , M − M + the over-/under-approximations Ψ ] M ⊆ γ ([ ] M − ] M + γ ([ [ ϕ ] Ψ ) ⊆ [ [ ϕ ] [ ϕ ] Ψ ) Theorem: ( ∀ ψ ∈ Ψ . ψν 1 ⇔ ψν 2 ) ⇒ ν 1 ≡ S ν 2 15 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  16. Soundness & Completeness M = � S C , P, ⇒ , s C Given: 0 � a transition system Ψ a set of predicates Ψ , M − M + the over-/under-approximations Ψ ] M ⊆ γ ([ ] M − ] M + γ ([ [ ϕ ] Ψ ) ⊆ [ [ ϕ ] [ ϕ ] Ψ ) Theorem: Theorem: ( ∀ ψ ∈ Ψ . ψν 1 ⇔ ψν 2 ) ⇒ ν 1 ≡ S ν 2 If M − M + [ [ ϕ ] ] = [ [ ϕ ] ] Then Ψ Ψ ϑ ϑ 16 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  17. Refinement of the Abstraction Basis: the ”exact” abstract transition system can be computed Not practicable Successive approximation of the abstract transition relation Counterexamples Given: M , Ψ , ϕ Algorithm for computing M + ψ stepwise s.t. ( ψ ⊆ Ψ ) = ϕ iff M + M | ψ | = ϕ 17 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  18. Example (Refinement) ϕ := ¬∃ ( tt Uat l 2 ) Ψ := { x = 0 , y = 0 , x ≤ 1 , x ≥ 1 , y ≤ 1 , y ≥ 1 , x > y, x < y } I. ψ 0 ≡ x = 0 l 0 , ψ 0 l 1 , ψ 0 l 2 , ψ 0 l 0 , ¬ ψ 0 l 1 , ¬ ψ 0 l 2 , ¬ ψ 0 ? M + | = ϕ NO { x =0 } � � ( l 0 , ψ 0 ) ⇒ + ( l 1 , ψ 0 ) ⇒ + ( l 1 , ¬ ψ 0 ) ⇒ + ( l 2 , ¬ ψ 0 ) τ = 18 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  19. Example – Continuation I. ⇒ + ( l 1 , ψ 0 ) ⇒ + ( l 1 , ¬ ψ 0 ) ⇒ + ( l 2 , ¬ ψ 0 )) τ = (( l 0 , ψ 0 ) � �� � � �� � � �� � � �� � s 0 s 1 s 2 s 3 Is there a corresponding counterexample on the concrete transition sys- tem? ∃ τ c = ( y 0 ⇒ y 1 ⇒ y 2 ⇒ y 3 ) s.t. y 0 ∈ γ ( s 0 ) , y 1 ∈ γ ( s 1 ) , y 2 ∈ γ ( s 2 ) , y 3 ∈ γ ( s 3 ) , y 0 = s c 0 F := ∃ y 0 , y 1 , y 2 , y 3 ∈ S C . y 0 ∈ γ ( s 0 ) ∧ y 1 ∈ γ ( s 1 ) ∧ y 2 ∈ γ ( s 2 ) ∧ y 3 ∈ γ ( s 3 ) ∧ y 1 ⇒ y 2 ∧ y 2 ⇒ y 3 ∧ y 0 = s c 0 Is F valid? 19 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

  20. Example – Continuation II. Here F is unsatisfiable! y 0 ∈ ( l 0 , x = y = 0) ∈ γ ( s 0 ) ⇓ y 1 ∈ ( l 1 , x = 0 ∧ 0 ≤ y ≤ 1) ∈ γ ( s 1 ) ⇓ y 2 ∈ ( l 1 , x > 0 ∧ y > x ) ∈ γ ( s 2 ) �⇓ y 3 ∈ ( l 1 , x > 0 ∧ y ≥ 0) = γ ( s 3 ) 20 O LIVER M ¨ 7 A PRIL 2002 OLLER : P REDICATE A BSTRACTION FOR D ENSE R EAL -T IME S YSTEMS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend