precision measurement of triple gauge couplings at future
play

Precision measurement of Triple Gauge Couplings at future e + e - PowerPoint PPT Presentation

Precision measurement of Triple Gauge Couplings at future e + e colliders Linear Collider Workshop 2019 Jakob Beyer 1,2 , Jenny List 1 1 DESY Hamburg 2 Universitt Hamburg Sendai, 30.10.2019 Charged Triple Gauge Couplings (TGCs) W + Z/


  1. Precision measurement of Triple Gauge Couplings at future e + e − colliders Linear Collider Workshop 2019 Jakob Beyer 1,2 , Jenny List 1 1 DESY Hamburg 2 Universität Hamburg Sendai, 30.10.2019

  2. Charged Triple Gauge Couplings (TGCs) W + Z/γ → LEP: ∼ 10 − 2 − 10 − 1 precision − W − 4.5 Precision of Higgs boson couplings [%] Model Independent EFT Fit LCC Physics WG 4 Impact of improved TGC precisions ⊕ HL-LHC ILC250 3.5 × 1/3 ⊕ HL-LHC ILC250, TGCs from LEP 3 2.5 Relevance today: × [arXiv:1903.01629] 1/2 2 > Gauge boson BSM? 1.5 > Higgs coupling fit! 1 0.5 0 DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 2/17 τ Γ Γ γ γ µ Z W b g c Z inv h

  3. <latexit sha1_base64="vzQ5trHOiRv9nqxgZuUhLt9d2rI=">AB9nicdZBLS8NAFIUn9VXrq+rSzWARXIVEira7ohuXFewD2lAm09t26GQSZ27EUvoX3OrKnbj17jwv5ikpajoWV2+cy/3cPxICoO82HlVlbX1jfym4Wt7Z3dveL+QdOEsebQ4KEMdtnBqRQ0ECBEtqRBhb4Elr+Cr1W/egjQjVLU4i8AI2VGIgOMUdRXc9Yolx65Wq5XKOXVtJxOdk7KzJCWyUL1X/Oz2Qx4HoJBLZkzHdSL0pkyj4BJmhW5sIGJ8zIbQSUbFAjDeNMs6oyexYRjSCDQVkmYQvl9MWDMJPCTzYDhyPz2UviX14lxUPGmQkUxguLpIxQSskeGa5GUALQvNCyNDlQoShnmiGCFpRxnsA4aWQ9LGs4f+heWa7ju3elEu1y0UzeXJEjskpckFqZFrUicNwsmIPJIn8mw9WC/Wq/U2X81Zi5tD8kPW+xdKXpMg</latexit> <latexit sha1_base64="vzQ5trHOiRv9nqxgZuUhLt9d2rI=">AB9nicdZBLS8NAFIUn9VXrq+rSzWARXIVEira7ohuXFewD2lAm09t26GQSZ27EUvoX3OrKnbj17jwv5ikpajoWV2+cy/3cPxICoO82HlVlbX1jfym4Wt7Z3dveL+QdOEsebQ4KEMdtnBqRQ0ECBEtqRBhb4Elr+Cr1W/egjQjVLU4i8AI2VGIgOMUdRXc9Yolx65Wq5XKOXVtJxOdk7KzJCWyUL1X/Oz2Qx4HoJBLZkzHdSL0pkyj4BJmhW5sIGJ8zIbQSUbFAjDeNMs6oyexYRjSCDQVkmYQvl9MWDMJPCTzYDhyPz2UviX14lxUPGmQkUxguLpIxQSskeGa5GUALQvNCyNDlQoShnmiGCFpRxnsA4aWQ9LGs4f+heWa7ju3elEu1y0UzeXJEjskpckFqZFrUicNwsmIPJIn8mw9WC/Wq/U2X81Zi5tD8kPW+xdKXpMg</latexit> <latexit sha1_base64="vzQ5trHOiRv9nqxgZuUhLt9d2rI=">AB9nicdZBLS8NAFIUn9VXrq+rSzWARXIVEira7ohuXFewD2lAm09t26GQSZ27EUvoX3OrKnbj17jwv5ikpajoWV2+cy/3cPxICoO82HlVlbX1jfym4Wt7Z3dveL+QdOEsebQ4KEMdtnBqRQ0ECBEtqRBhb4Elr+Cr1W/egjQjVLU4i8AI2VGIgOMUdRXc9Yolx65Wq5XKOXVtJxOdk7KzJCWyUL1X/Oz2Qx4HoJBLZkzHdSL0pkyj4BJmhW5sIGJ8zIbQSUbFAjDeNMs6oyexYRjSCDQVkmYQvl9MWDMJPCTzYDhyPz2UviX14lxUPGmQkUxguLpIxQSskeGa5GUALQvNCyNDlQoShnmiGCFpRxnsA4aWQ9LGs4f+heWa7ju3elEu1y0UzeXJEjskpckFqZFrUicNwsmIPJIn8mw9WC/Wq/U2X81Zi5tD8kPW+xdKXpMg</latexit> <latexit sha1_base64="vzQ5trHOiRv9nqxgZuUhLt9d2rI=">AB9nicdZBLS8NAFIUn9VXrq+rSzWARXIVEira7ohuXFewD2lAm09t26GQSZ27EUvoX3OrKnbj17jwv5ikpajoWV2+cy/3cPxICoO82HlVlbX1jfym4Wt7Z3dveL+QdOEsebQ4KEMdtnBqRQ0ECBEtqRBhb4Elr+Cr1W/egjQjVLU4i8AI2VGIgOMUdRXc9Yolx65Wq5XKOXVtJxOdk7KzJCWyUL1X/Oz2Qx4HoJBLZkzHdSL0pkyj4BJmhW5sIGJ8zIbQSUbFAjDeNMs6oyexYRjSCDQVkmYQvl9MWDMJPCTzYDhyPz2UviX14lxUPGmQkUxguLpIxQSskeGa5GUALQvNCyNDlQoShnmiGCFpRxnsA4aWQ9LGs4f+heWa7ju3elEu1y0UzeXJEjskpckFqZFrUicNwsmIPJIn8mw9WC/Wq/U2X81Zi5tD8kPW+xdKXpMg</latexit> DESYª Effective Field Theory (EFT) | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 ard Model Precision Tests -1 ) L dim-6 = For many generic models & new interactions: 
 � i f ( dim-6 ) i Λ 2 = ⇒ Effective Field Theory Here: High- M BSM O ( dim-6 ) i = ⇒ To measure: c i = f ( dim-6 ) 10-100 TeV ? i Λ 2 6 = [F. Simon] Page 3/17

  4. TGCs in SM-EFT ⇒ To measure: c i = f ( dim-6 ) f ( dim-6 ) O ( dim-6 ) i � i L dim-6 = = i Λ 2 Λ 2 i � † B µν � � † τ a W a,µν � f B Ψ f W Ψ � � � � L TGC D L D L D L D L dim − 6 = ig 1 µ Ψ ν Ψ + ig 2 µ Ψ ν Ψ Λ 2 Λ 2 f W 6 Λ 2 W a,µ ǫ abc W b,ν ρ W c,ρ + g 2 ν µ m 2 g Z Z W + 1 =1 + f B Ψ Λ 2 κ γ =1 + ( f B Ψ + f W Ψ ) m 2 Z/γ W Λ 2 W − λ γ =3 m 2 W g 2 2 f W Λ 2 ⇒ Deviations: ∆ { g Z 1 , κ γ , λ γ } ∼ { c i · m 2 = W/Z } DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 4/17

  5. Extracting TGCs e + W + e + W − Z/γ ν e W + e − e − W − Key process: WW production s-channel: TGCs { g Z 1 , κ γ , λ γ } � 2 � σ meas − σ pred ( TGCs ) Idea: Minimize χ 2 = � ∆ σ meas bins However: s- and t-channel highly chirality dependent ... DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 5/17

  6. Beam polarisation For m ∼ 0 : = x % particles fixed helicity, (100 − x )% random helicity ˆ > 1 polarised beam − → 2 datasets: L enhanced / R enh. > 2 polarised beam − → 4 datasets: LR / RL / LL / RR enh. σ chirality dependent! ( SM: U (1) × SU (2) L × SU (3) ) q e + q ′ ¯ W R,L [R. Karl] W e − ν L,R l @ e + e − collider: high-precision σ LR/RL WW = ⇒ Beam polarisation measurement from WW pair production! DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 6/17

  7. Combined measurement e + L,R W + > Triple Gauge Couplings > Beam polarisations W − e − L,R e + Other SM parameters? = ⇒ A e , ... Z e − Here generalized : 1 total cross-sec. σ tot process & 1 asymmetry A ij, process per process Extract { g Z 1 , κ γ , λ γ , beam polarisations , σ tot process , A ij, process } in parallel from measurement! DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 7/17

  8. Combined fit setup � 2 � σ meas − σ pred ( parameters ) Minimize χ 2 = � ∆ σ meas processes , bins { g Z 1 , κ γ , λ γ , beam polarisations , σ tot process , A ij, process } Input: > “Collider”: Energy, luminosity, polarisations Output: > “Measurement”: σ meas ∀ processes, bins > Parameter uncertainties / sensitivities > Theory: σ pred ∀ processes, bins Theory: & parameter-dependence DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 8/17

  9. Considered processes Fit parameters: { g Z 1 , κ γ , λ γ , beam polarisations , σ tot process , A ij, process } Collider parameters: energy, luminosity, polarisations Processes: q q q q ′ e + q ¯ e + ¯ e + q ′ ¯ W Z W W Z e ¯ ν e − e − l ∓ e − ν l ± l 2000 3D-Bins × 2( W ± ) 2000 3D-Bins 2000 3D-Bins q e + e + l ± q ¯ ¯ e − e − l ∓ 20 1D-Bins 20 1D-Bins DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 9/17

  10. DISCLAIMER So far: > Only 250 GeV > Generator level > “Analysis”: ǫ = 60% , π = 80% ∀ bins, processes (motivated by WW full sim. study) Not considered: > ISR / Beam spectrum 4f: impact on angular distr. small 2f: 50% would be @ Z -pole → Here: all 250 GeV > Detector & full analysis (all channels) > Systematic Unc. ( ∆ ǫ, ∆ L, ... ) Except: Polarisation Theory uncert. (partially) as fit parameters DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 10/17

  11. Lepton collider options Linear Circular Typical: L ∼ 2 ab − 1 , e − (& e + ) polarised Typical: L ∼ 10 ab − 1 , e − & e + unpolarised = ⇒ 6 scenarios : > Luminosity: 2 ab − 1 / 10 ab − 1 e − & e + : 45%( − + ) , 45%( + − ) , 5%( −− ) , 5%( ++ ) e − : > Polarised beams: 80%( − 0 ) , 20%( +0 ) None : 100%( 00 ) DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 11/17

  12. Combined fit results 50 250 GeV e + e − ( P e − , P e + ) Fit EW + non-0 pol., (80%,30%) no syst. unc. 40 (80%,0%) (0%,0%) Uncertainty [10 − 4 ] 2 ab − 1 > g Z 1 , λ γ : 30 10 ab − 1 10 fb − 1 unpol. ≈ 2 fb − 1 pol. > κ γ : 20 10 fb − 1 unpol. ≪ 2 fb − 1 pol. 10 0 ∆ g Z ∆ ∆ λ γ γ 1 DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 12/17

  13. ∆ P / P ∼ 10 − 3 − 10 − 4 [Appendix] Combined fit results σ tot � process = σ ij, process A ij, process = ( σ ij − σ ji ) / ( σ ij + σ ji ) LR,RL,... (Definition process-dependent) 35 250 GeV e + e − ( P e − , P e + ) 250 GeV e + e − ( P e − , P e + ) 50 Fit EW + non-0 pol., Fit EW + non-0 pol., 30 (80%,30%) (80%,30%) no syst. unc. no syst. unc. (80%,0%) (80%,0%) (0%,0%) 40 (0%,0%) 25 Uncertainty [10 − 4 ] Uncertainty [10 − 4 ] 2 ab − 1 2 ab − 1 10 ab − 1 10 ab − 1 20 30 15 20 10 10 5 0 0 ∆ σ eνW + ( qq ) ∆ σ eνW − ( qq ) ∆ σ WW ( lνqq ) ∆ σ ZZ ( lνqq ) ∆ σ qq ∆ σ ll ∆ A eνW + ( qq ) ∆ A eνW − ( qq ) ∆ A WW ( lνqq ) ∆ A ZZ ( lνqq ) ∆ A qq ∆ A ll Overall similar sensitivities. However: 0-polarisations fixed! DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 13/17

  14. If 0 � = 0? Reminder: Only fitting non-0 polarisations − → Less fit parameters = ⇒ Physical?? > Circular: Maybe... (Sokolov-Ternov) > Linear: Need to measure! 35 250 GeV e + e − 250 GeV e + e − 50 Fit EW + non-0 pol., Fit EW + non-0 pol., 30 no syst. unc. no syst. unc. 40 25 Uncertainty [10 − 4 ] ( P e − , P e + ) Uncertainty [10 − 4 ] ( P e − , P e + ) (80%,30%) (80%,30%) 20 (80%,0%) (80%,0%) 30 (0%,0%) (0%,0%) 15 P e + free, 2 ab − 1 P e + free, 2 ab − 1 2 ab − 1 20 2 ab − 1 10 ab − 1 10 ab − 1 10 10 5 0 0 ∆ σ eνW + ( qq ) ∆ σ eνW − ( qq ) ∆ σ WW ( lνqq ) ∆ σ ZZ ( lνqq ) ∆ σ qq ∆ σ ll ∆ A eνW + ( qq ) ∆ A eνW − ( qq ) ∆ A WW ( lνqq ) ∆ A ZZ ( lνqq ) ∆ A qq ∆ A ll = ⇒ If 0 = 0 not guaranteed, large uncertainties! DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 14/17

  15. If 0 � = 0? 50 250 GeV e + e − ( P e − , P e + ) Fit EW + non-0 pol., (80%,30%) no syst. unc. 40 (80%,0%) (0%,0%) Uncertainty [10 − 4 ] P e + free, 2 ab − 1 > No significant effect 30 2 ab − 1 on TGCs 10 ab − 1 But: 20 Syst. unc. not considered! 10 0 ∆ g Z ∆ ∆ λ γ γ 1 DESYª | Precision TGCs | Jakob Beyer | Sendai, 30.10.2019 Page 15/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend