precise parameter synthesis for stochastic biochemical
play

Precise Parameter Synthesis for Stochastic Biochemical Systems - PowerPoint PPT Presentation

Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Precise Parameter Synthesis for Stochastic Biochemical Systems Milan ska 1 , 2 , Frits Dannenberg 2 , Marta Kwiatkowska 2 , Nicola Paoletti 2 Ce Faculty of


  1. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Precise Parameter Synthesis for Stochastic Biochemical Systems Milan ˇ ska 1 , 2 , Frits Dannenberg 2 , Marta Kwiatkowska 2 , Nicola Paoletti 2 Ceˇ Faculty of Informatics, Masaryk University, Brno, Czech Republic 1 Department of Computer Science, University of Oxford, UK 2 CMSB 2014, Manchester 17.11.2014 Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 1 / 16

  2. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Introduction Biochemical reaction networks • formalism for modelling biological systems • signalling pathways, gene regulation, epidemic models • DNA logic gates, DNA walker circuits • low molecular counts – stochastic dynamics • semantics given by Continuous-Time Markov Chains (CTMCs) Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 2 / 16

  3. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Introduction Biochemical reaction networks • formalism for modelling biological systems • signalling pathways, gene regulation, epidemic models • DNA logic gates, DNA walker circuits • low molecular counts – stochastic dynamics • semantics given by Continuous-Time Markov Chains (CTMCs) Uncertain kinetic parameters • limited knowledge of rate parameters • controllable parameters Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 2 / 16

  4. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Introduction Biochemical reaction networks • formalism for modelling biological systems • signalling pathways, gene regulation, epidemic models • DNA logic gates, DNA walker circuits • low molecular counts – stochastic dynamics • semantics given by Continuous-Time Markov Chains (CTMCs) Uncertain kinetic parameters • limited knowledge of rate parameters • controllable parameters Precise parameter synthesis • synthesising parameters so that a given property is guaranteed to hold or the probability of satisfying is maximised/minimized Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 2 / 16

  5. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Running Example Parameters: P = k 1 ∈ [0 . 1 , 0 . 3] , k 2 = 0 . 02 , initial state X = 15 CTMCs for biochemical reaction networks • state - vector of populations/positions • bounds on molecular counts – finite-state models • transition rates given by rate parameters using rate functions • low degree polynomial functions (mass action kinetics, etc.) Parameter space P • Cartesian product of intervals of rate parameters • continuous parameter spaces Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 3 / 16

  6. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Running Example Parameters: P = k 1 ∈ [0 . 1 , 0 . 3] , k 2 = 0 . 02 , initial state X = 15 Property specification • time-bounded fragment of Continuous Stochastic Logic (CSL) • also applicable to CSL with reward operators • path formula φ = F [1000 , 1000] 15 ≤ X ≤ 20 Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 3 / 16

  7. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Running Example Parameters: P = k 1 ∈ [0 . 1 , 0 . 3] , k 2 = 0 . 02 , initial state X = 15 Property specification • time-bounded fragment of Continuous Stochastic Logic (CSL) • also applicable to CSL with reward operators • path formula φ = F [1000 , 1000] 15 ≤ X ≤ 20 Synthesize values of k 1 such that the probability of 1 φ being satisfied is above 40% (threshold synthesis) 2 φ being satisfied is maximized (max synthesis) Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 3 / 16

  8. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Problem Formulation Parametric CTMC • transition rates depend on a set of variables K • parametric rate matrix R K – polynomials with variables k ∈ K • describes set {C p | p ∈ P} where C p is the CTMC obtained by instantiating p in R K Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 4 / 16

  9. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Problem Formulation Parametric CTMC • transition rates depend on a set of variables K • parametric rate matrix R K – polynomials with variables k ∈ K • describes set {C p | p ∈ P} where C p is the CTMC obtained by instantiating p in R K Satisfaction function Λ • let φ be a CSL path formula • Λ : P → [0 , 1] such that Λ( p ) is the probability of φ being satisfied over C p • analytical computation of Λ is intractable • Λ can be discontinuous due to nested probabilistic operators Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 4 / 16

  10. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Problem Formulation Satisfaction function Λ for the running example P = k 1 ∈ [0 . 1 , 0 . 3] , k 2 = 0 . 02 , initial state X = 15 φ = F [1000 , 1000] 15 ≤ X ≤ 20 k 1 Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 4 / 16

  11. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Problem Formulation – Threshold Synthesis For a given P , φ , probability threshold r and volume tolerance ε , the problem is finding a partition { T , U , F } of P such that 1 ∀ p ∈ T . Λ( p ) ≥ r ; and 2 ∀ p ∈ F . Λ( p ) < r ; and 3 vol( U ) / vol( P ) ≤ ε (vol( A ) is the volume of A ). r = 0.4 F U U T F k 1 Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 5 / 16

  12. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Problem Formulation – Max Synthesis For a given P , φ and probability tolerance ǫ the problem is finding a partition { T , F } of P and probability bounds Λ ⊥ , Λ ⊤ such that: 1 Λ ⊤ − Λ ⊥ ≤ ǫ ; 2 ∀ p ∈ T . Λ ⊥ ≤ Λ( p ) ≤ Λ ⊤ ; and 3 ∃ p ∈ T . ∀ p ′ ∈ F . Λ( p ) > Λ( p ′ ). probability bounds F F T k 1 Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 6 / 16

  13. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Computing Lower and Upper Probability Bounds Safe approximation of the lower and upper bounds of Λ • generalization of a procedure from ˇ Ceˇ ska et al. CAV’13 • Λ min ≤ min p ∈P Λ( p ) and Λ max ≥ max p ∈P Λ( p ) • orange box - lower and upper bounds • purple box - approximation of lower and upper bounds Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 7 / 16

  14. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Computing Lower and Upper Probability Bounds Parameter space decomposition • independent computation for each subspace • same asymptotic time complexity as standard uniformization • improves the accuracy of approximation • provides the basis of our synthesis algorithms Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 7 / 16

  15. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Refinement-based Threshold Synthesis 1: T ← ∅ , F ← ∅ , U ← P 2: repeat 3: R ← decompose( U ), U ← ∅ 4: for all R ∈ R do F (Λ R min , Λ R max ) ← computeBounds( R , φ ) 5: U if Λ R min ≥ r then 6: T 7: T ← T ∪ R else if Λ R 8: max < r then F ← F ∪ R 9: 10: else 11: U ← U ∪ R 12: until vol( U ) / vol( P ) ≤ ε • for our setting we shown Λ is a piecewise polynomial function with finite number of subdomains → termination is guaranteed • several heuristics for the parameter space decomposition Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 8 / 16

  16. Introduction Problem Formulation Parameter Synthesis Case Studies Conclusion Refinement-based Max Synthesis 1: F ← ∅ , T ← P 2: repeat 3: R ← decompose( T ), T ← ∅ F 4: for all R ∈ R do T (Λ R min , Λ R max ) ← computeBounds( R , φ ) 5: Λ ⊤ 6: min ← getMaximalLowerBound( R ) 7: for all R ∈ R do if Λ R max < Λ ⊤ 8: min then 9: F ← F ∪ R 10: else 11: T ← T ∪ R Λ ⊥ ← min { Λ R min | R ∈ T } 12: Λ ⊤ ← max { Λ R 13: max | R ∈ T } 14: until Λ ⊤ − Λ ⊥ ≤ ǫ getMaximalLowerBound( R ) – under-approximation of the maximum • naive approach – Λ ⊤ min = max { Λ R min |R ∈ R } • sampling-based approach improves Λ ⊤ min by ⊤ Λ min = max { Λ( p i ) | p i ∈ { p 1 , p 2 , . . . }} – excludes more boxes Milan ˇ Ceˇ ska et al. Precise Parameter Synthesis for Stochastic Biochemical Systems 17.11.2014 9 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend