precise measurement of the neutron beta decay parameters
play

Precise Measurement of the Neutron Beta Decay Parameters a and b - PowerPoint PPT Presentation

Precise Measurement of the Neutron Beta Decay Parameters a and b Dinko Po cani c, for the Nab Collaboration University of Virginia DoE Review of the FnPB/SNS, Oak Ridge, 23 April 2009 D. Po cani c (UVa) The Nab Experiment/FnPB/SNS


  1. Precise Measurement of the Neutron Beta Decay Parameters a and b Dinko Poˇ cani´ c, for the Nab Collaboration University of Virginia DoE Review of the FnPB/SNS, Oak Ridge, 23 April 2009 D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 1 / 24

  2. Outline Outline Motivation and Goals Measurement principles Proton TOF and e- ν correlation Spectrometer design Detection function Overview of uncertainties Event statistics, rates, running time Systematic uncertainties Asymmetric design Spectrometer basics Summary D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 2 / 24

  3. Basic facts Goals of the Experiment ◮ Measure the electron-neutrino parameter a in neutron decay ∆a ≃ 10 − 3 with accuracy of a − 0 . 1054 ± 0 . 0055 Byrne et al ’02 current results: − 0 . 1017 ± 0 . 0051 Stratowa et al ’78 − 0 . 091 ± 0 . 039 Grigorev et al ’68 ◮ Measure the Fierz interference term b in neutron decay ∆b ≃ 3 × 10 − 3 with accuracy of current results: none D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 3 / 24

  4. Basic facts Goals of the Experiment ◮ Measure the electron-neutrino parameter a in neutron decay ∆a ≃ 10 − 3 with accuracy of a − 0 . 1054 ± 0 . 0055 Byrne et al ’02 current results: − 0 . 1017 ± 0 . 0051 Stratowa et al ’78 − 0 . 091 ± 0 . 039 Grigorev et al ’68 ◮ Measure the Fierz interference term b in neutron decay ∆b ≃ 3 × 10 − 3 with accuracy of current results: none D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 3 / 24

  5. Basic facts Goals of the Experiment ◮ Measure the electron-neutrino parameter a in neutron decay ∆a ≃ 10 − 3 with accuracy of a − 0 . 1054 ± 0 . 0055 Byrne et al ’02 current results: − 0 . 1017 ± 0 . 0051 Stratowa et al ’78 − 0 . 091 ± 0 . 039 Grigorev et al ’68 ◮ Measure the Fierz interference term b in neutron decay ∆b ≃ 3 × 10 − 3 with accuracy of current results: none D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 3 / 24

  6. Basic facts Goals of the Experiment ◮ Measure the electron-neutrino parameter a in neutron decay ∆a ≃ 10 − 3 with accuracy of a − 0 . 1054 ± 0 . 0055 Byrne et al ’02 current results: − 0 . 1017 ± 0 . 0051 Stratowa et al ’78 − 0 . 091 ± 0 . 039 Grigorev et al ’68 ◮ Measure the Fierz interference term b in neutron decay ∆b ≃ 3 × 10 − 3 with accuracy of current results: none D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 3 / 24

  7. Basic facts Neutron Decay Parameters (SM) dw ≃ k e E e (E 0 − E e ) 2 dE e dΩ e dΩ ν � k e · � � � � � k e × � � � k ν + b m k e k ν k ν � × 1 + a + � � σ n � · A + B + D E e E ν E e E e E ν E e E ν with: A = − 2 | λ | 2 + Re( λ ) a = 1 − | λ | 2 1 + 3 | λ | 2 1 + 3 | λ | 2 B = 2 | λ | 2 − Re( λ ) Im( λ ) D = 2 1 + 3 | λ | 2 1 + 3 | λ | 2 λ = G A (with τ n ⇒ CKM V ud ) ( D � = 0 ⇔ T inv. violation) G V D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 4 / 24

  8. Basic facts Neutron Decay Parameters (SM) dw ≃ k e E e (E 0 − E e ) 2 dE e dΩ e dΩ ν � k e · � � � � � k e × � � � k ν + b m k e k ν k ν � × 1 + a + � � σ n � · A + B + D E e E ν E e E e E ν E e E ν with: A = − 2 | λ | 2 + Re( λ ) a = 1 − | λ | 2 1 + 3 | λ | 2 1 + 3 | λ | 2 B = 2 | λ | 2 − Re( λ ) Im( λ ) D = 2 1 + 3 | λ | 2 1 + 3 | λ | 2 λ = G A (with τ n ⇒ CKM V ud ) ( D � = 0 ⇔ T inv. violation) G V D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 4 / 24

  9. Basic facts Neutron Decay Parameters (SM) dw ≃ k e E e (E 0 − E e ) 2 dE e dΩ e dΩ ν � k e · � � � � � k e × � � � k ν + b m k e k ν k ν � × 1 + a + � � σ n � · A + B + D E e E ν E e E e E ν E e E ν with: A = − 2 | λ | 2 + Re( λ ) a = 1 − | λ | 2 1 + 3 | λ | 2 1 + 3 | λ | 2 B = 2 | λ | 2 − Re( λ ) Im( λ ) D = 2 1 + 3 | λ | 2 1 + 3 | λ | 2 λ = G A (with τ n ⇒ CKM V ud ) ( D � = 0 ⇔ T inv. violation) G V D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 4 / 24

  10. Basic facts n-decay Correlation Parameters Beyond V ud ◮ Beta decay parameters constrain L-R symmetric, SUSY extensions to the SM. [ Reviews: Herczeg, Prog. Part. Nucl. Phys. 46 , 413 (2001), N. Severijns, M. Beck, O. Naviliat-ˇ Cunˇ ci´ c, Rev. Mod. Phys. 78 , 991 (2006), Ramsey-Musolf, Su, Phys. Rep. 456 , 1 (2008)] ◮ Fierz interference term, never measured for the neutron, offers a sensitive test of non-( V − A ) terms in the weak Lagrangian ( S , T ). [ S. Profumo, M. J. Ramsey-Musolf, S. Tulin, PRD 75 , 075017 (2007)] ◮ Measurement of the electron-energy dependence of a and A can separately confirm CVC and absence of SCC. [ Gardner, Zhang, PRL 86 , 5666 (2001), Gardner, hep-ph/0312124] ◮ A general connections exists between non-SM (e.g., S , T ) terms in d → ue ¯ ν and limits on ν masses. [ Ito + Pr´ ezaeu, PRL 94 (2005)] D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 5 / 24

  11. Measurement principles Proton TOF and e- ν correlation Nab Measurement principles: Proton phase space p p2 (MeV 2 /c 2 ) proton phase space 1.4 cos θ e ν = 1 1.2 1 0.8 cos θ e ν = 0 0.6 0.4 0.2 cos θ e ν = -1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 E e (MeV) Note: For a given E e , cos θ e ν is a function of p 2 p only. D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 6 / 24

  12. Measurement principles Proton TOF and e- ν correlation Measurement principles: Proton momentum response Yield (arb. units) 0.5 E e = 0.075 MeV 0.4 0.236 MeV 0.3 0.450 MeV 0.2 0.700 MeV 0.1 Slope = a 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 p p2 (MeV 2 /c 2 ) D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 7 / 24

  13. Measurement principles Spectrometer design Measurement principles: Symmetric pectrometer Neutron Segmented Beam Si�detector TOF�region Decay transition Volume region acceleration region Elements of spectrometer to be shared with other planned n decay experiments, e.g., abBA . D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 8 / 24

  14. Measurement principles Spectrometer design Measurement principles: Spectrometer field profiles B 0 Nab Spectrometer Field Profiles 4 U (10 4 V) 3 2 B (T) 1 B TOF 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 z (m) r B = B TOF B 0 D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 9 / 24

  15. Measurement principles Detection function Measurement principles: Detection function (I) Proton time of flight in B field: � p p0 · � t p = f (cos θ p,0 ) cos θ p,0 = � B � where . � p p p p0 B � � decay pt. For an adiabatically expanding field prior to acceleration, � l � l m p dz m p dz f (cos θ p,0 ) = cos θ p ( z ) = . � B 0 sin 2 θ p,0 1 − B ( z ) z 0 z 0 To this we add effects of magnetic reflections and, later, of electric field acceleration. D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 10 / 24

  16. Measurement principles Detection function Measurement principles: Detection function (II) The proton momentum distribution within the phase space bounds is given by P p ( p 2 [recall: cos θ e ν = f ( p 2 p ) = 1 + a β e cos θ e ν , p )] while � 1 � 1 � � � P p ( p 2 , p 2 dp 2 P t = p ) Φ p . p t 2 t 2 p p Detection function Φ relates the proton momentum and time-of-flight distributions! To extract a reliably: ◮ Φ must be as narrow as possible, ◮ Φ must be understood very precisely. Two methods (“A” and “B”) pursued to specify Φ. D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 11 / 24

  17. Measurement principles Detection function Measurement principles: Detection function (II) The proton momentum distribution within the phase space bounds is given by P p ( p 2 [recall: cos θ e ν = f ( p 2 p ) = 1 + a β e cos θ e ν , p )] while � 1 � 1 � � � P p ( p 2 , p 2 dp 2 P t = p ) Φ p . p t 2 t 2 p p Detection function Φ relates the proton momentum and time-of-flight distributions! To extract a reliably: ◮ Φ must be as narrow as possible, ◮ Φ must be understood very precisely. Two methods (“A” and “B”) pursued to specify Φ. D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 11 / 24

  18. Measurement principles Detection function Measurement principles: Detection function (II) The proton momentum distribution within the phase space bounds is given by P p ( p 2 [recall: cos θ e ν = f ( p 2 p ) = 1 + a β e cos θ e ν , p )] while � 1 � 1 � � � P p ( p 2 , p 2 dp 2 P t = p ) Φ p . p t 2 t 2 p p Detection function Φ relates the proton momentum and time-of-flight distributions! To extract a reliably: ◮ Φ must be as narrow as possible, ◮ Φ must be understood very precisely. Two methods (“A” and “B”) pursued to specify Φ. D. Poˇ cani´ c (UVa) The Nab Experiment/FnPB/SNS 23 Apr ’09 11 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend