practical cfl conditions for muscl schemes solving euler
play

Practical CFL conditions for MUSCL schemes solving Euler equations - PowerPoint PPT Presentation

Practical CFL conditions for MUSCL schemes solving Euler equations Yohan Penel 1 1 LRC Manon UPMC-LJLL, Univ. Paris 6 Joint work with C. Calgaro & E. Creus e (Univ. Lille 1, INRIA Lille) T. Goudon (INRIA Sophia-Antipolis) 14th


  1. Practical CFL conditions for MUSCL schemes solving Euler equations Yohan Penel 1 1 LRC Manon – UPMC-LJLL, Univ. Paris 6 Joint work with C. Calgaro & E. Creus´ e (Univ. Lille 1, INRIA Lille) T. Goudon (INRIA Sophia-Antipolis) 14th International Conference on Hyperbolic Problems: Theory, Numerics, Applications Padova – June, 25th. 2012

  2. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Outline Introduction 1 Computation of the time step 2 Admissibility 3 Simulations 4 2 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  3. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Issue ❧ System of conservation laws modelling a physical phenomenon like in fluid mechanics, ... ✭ ❅ t W + r ✁ F ( W ) = 0 ❀ W (0 ❀ x ) = W 0 ( x ) ✿ ❧ Physical constraints : W ✷ ❲ ➠ Maximum principle (Euler for incompressible fluids: density) ➠ Positivity (Euler for compressible fluids: density and pressure) ❧ These constraints must be satisfied: ➠ at the continuous level (relevance of the mathematical model) ➠ at the discrete level (robustness of the numerical scheme) 3 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  4. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Example Euler equations for a 2D perfect fluid: W = t ( ✚❀ ✚ u ❀ ✚ E ) ❀ F = t ( ✚ u ❀ ✚ u ✡ u + p ■ 2 ❀ ( ✚ E + p ) u ) W 4 � W 2 2 + W 2 ✚ ✔ ✕ ✛ W ✷ R 4 : ✚ = W 1 ❃ 0 et p = ( ✌ � 1) 3 ❲ = ❃ 0 2 W 1 ✭ W l ❀ if x 1 ❁ 0 ❀ Riemann problem : W 0 ( x ) = W r ❀ if x 1 ❃ 0 ✿ Rarefaction waves and vacuum (Einfeldt, Munz, Roe & Sjgreen, 1991): ❧ ✚ 0 ❃ 0, u 0 ❃ 0, E 0 ❃ u 2 0 ❂ 2 ❧ W l = ( ✚ 0 ❀ � ✚ 0 u 0 ❀ 0 ❀ ✚ 0 E 0 ) and W r = ( ✚ 0 ❀ ✚ 0 u 0 ❀ 0 ❀ ✚ 0 E 0 ) 4 ✌ 3 ✌ � 1 E 0 ❃ u 2 ❧ If 0 , then density and pressure remain positive . 4 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  5. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Positivity-preserving schemes 1st order ❧ Einfeldt et al. (1991), Bouchut (2004) ❧ Godunov, Rusanov, HLLs / Roe 2nd order : FV schemes + MUSCL strategy ❧ Scalar equations : Clain & Clauzon (2010), Calgaro et al. (2010) ➠ Modification of limiters ➠ Adaptation of the CFL condition ❧ Systems of conservation laws : ➠ . . . monoslope reconstruction: Perthame & Shu (1996) ➠ . . . multislope reconstruction: Berthon (2006) 5 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  6. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion MUSCL strategy M q Ω i Ω j M l M j n il Γ il M p M k M i M m ❥ Γ ij ❥ W n +1 = W n i � ∆ t n ❳ W n ij ❀ W n � ✁ ji ❀ n ij ❥ Ω i ❥ F i j ✷❱ ( i ) 6 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  7. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) ❥ Γ ij ❥ i � ∆ t n ❳ W n +1 W n ❥ Ω i ❥ F � W n ij ❀ W n ✁ = ji ❀ n ij i j ✷❱ ( i ) 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  8. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) ❥ Γ ij ❥ i � ∆ t n ❳ W n +1 W n ❥ Ω i ❥ F � W n ij ❀ W n ✁ = ji ❀ n ij i j ✷❱ ( i ) ❥ Ω ✄ i ❥ ❥ Ω ij ❥ ❳ W n ❥ Ω i ❥ W ✄ ❥ Ω i ❥ W n = i + i ij j ✷❱ ( i ) 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  9. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) ❥ Γ ij ❥ i � ∆ t n ❳ W n +1 W n ❥ Ω i ❥ F � W n ij ❀ W n ✁ = ji ❀ n ij i j ✷❱ ( i ) ❥ Ω ✄ i ❥ ❥ Ω ij ❥ ❳ W n ❥ Ω i ❥ W ✄ ❥ Ω i ❥ W n = i + i ij j ✷❱ ( i ) ❥ Ω ✄ i ❥ ❥ Ω ij ❥ ✄ ❳ W n +1 = i + ❥ Ω i ❥ W ❥ Ω i ❥ W ij i j ✷❱ ( i ) 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  10. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) ❥ Γ ij ❥ i � ∆ t n ❳ W n +1 W n ❥ Ω i ❥ F � W n ij ❀ W n ✁ = ji ❀ n ij i j ✷❱ ( i ) ❥ Ω ✄ i ❥ ❥ Ω ij ❥ ❳ W n ❥ Ω i ❥ W ✄ ❥ Ω i ❥ W n = i + i ij j ✷❱ ( i ) ❥ Ω ✄ i ❥ ❥ Ω ij ❥ ✄ ❳ W n +1 = i + ❥ Ω i ❥ W ❥ Ω i ❥ W ij i j ✷❱ ( i ) W n � ∆ t F ( W n ❀ V n ❀ n ) � F ( W n ❀ W n ❀ n ) ✄ ✂ W = ❵ for a suitable 1D flux ❋ and a small enough time step ∆ t 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  11. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) ❥ Γ ij ❥ i � ∆ t n ❳ W n +1 W n ❥ Ω i ❥ F � W n ij ❀ W n ✁ = ji ❀ n ij i j ✷❱ ( i ) ❳ W n = ✑ ✄ i W ✄ i + (1 � ✑ ✄ ✑ ij W n i ) i ij j ✷❱ ( i ) ✄ ❳ W n +1 = ✑ ✄ i + (1 � ✑ ✄ i ) i W ✑ ij W ij i j ✷❱ ( i ) W n � ∆ t F ( W n ❀ V n ❀ n ) � F ( W n ❀ W n ❀ n ) ✄ ✂ W = ❵ for a suitable 1D flux ❋ and a small enough time step ∆ t 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  12. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Modification of Berthon’s strategy (2006) How to choose ✑ ✄ i and ✑ ij ? Accuracy Efficiency Computation of Optimization of the additional the CFL condition state W ✄ ✷ ❲ i ”large” ✑ ✄ ”small” ✑ ✄ Balance? i i 7 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  13. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Outline Introduction 1 Computation of the time step 2 Admissibility 3 Simulations 4 8 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  14. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Outline Introduction 1 Computation of the time step 2 Admissibility 3 Simulations 4 9 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  15. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Convex combinations ❥ Γ ij ❥ � ∆ t n ❳ ❥ Ω i ❥ F � ✁ W n +1 W n W n ij ❀ W n = ji ❀ n ij i i j ✷❱ ( i ) ❳ ❳ ✄ W n i = ✑ ✄ i W ✄ i + (1 � ✑ ✄ ✑ ij W n W n +1 = ✑ ✄ i + (1 � ✑ ✄ i ) i W i ) ✑ ij W ij ij i j ✷❱ ( i ) j ✷❱ ( i ) 10 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  16. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Convex combinations ❥ Γ ij ❥ � ∆ t n ❳ ❥ Ω i ❥ F � ✁ W n +1 W n W n ij ❀ W n = ji ❀ n ij i i j ✷❱ ( i ) ❳ ❳ ✄ W n i = ✑ ✄ i W ✄ i + (1 � ✑ ✄ ✑ ij W n W n +1 = ✑ ✄ i + (1 � ✑ ✄ i ) i W i ) ✑ ij W ij ij i j ✷❱ ( i ) j ✷❱ ( i ) 4 ❳ W n ij � ∆ t n ✏ ij ❀ k F � W n ij ❀ W n ✁ = ij ❀ k ❀ n ij ❀ k j ✷ ❱ ( i ) W ij ❀ k =1 4 ✽ ✏ ij ❀ k ❳ ❃ W ij = W ij ❀ k ❁ ✖ ij ❀ k k =1 ❃ W ij ❀ k = W n ij � ∆ t n ✖ ij ❀ k ✂ F ( W n ij ❀ W n ij ❀ k ❀ n ij ❀ k ) � F ( W n ij ❀ W n ij ❀ n ij ❀ k ) ✄ ✿ 10 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  17. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Assumptions Flux In addition to classical properties, we assume: ✽ ( V ❀ W ) ✷ ❲ 2 ❀ W � ∆ t ❵ [ ❋ ( W ❀ V ) � ❋ ( W ❀ W )] ✷ ❲ under the CFL condition ∆ t max ❥ ✕ k ( V ❀ W ) ❥ � ☛ 0 ❵ . k ✚ ✛ CFL Condition ∆ t n ✂ max ✖ ✄ ✂ ¯ ✕ n ij ❀ max 1 ✔ k ✔ 4 ✖ ij ❀ k i ✔ ☛ 0 j ✷❱ ( i ) ¯ ✕ n ❥ u n ij ✁ n ij ❀ k ❥ + c n ij ❀ ❥ u n ij ❀ k ✁ n ij ❀ k ❥ + c n ✟ ✠ i := max ij ❀ k j ✷❱ ( i ) 1 ✔ k ✔ 4 Optimization The optimal coefficient reads ✽ 2 ❥ Γ ij ❥ si ✑ ✄ i � ✑ ✄ i ) ❥ Ω i ❥ max ❀ ❃ ❃ i (1 � ✑ ✄ ✑ ij ❃ j ✷❱ ( i ) ❃ ❁ ✖ ♦♣t ( ✑ ✄ i ❀ ✑ ij ) = i ✛✕ � 1 ❥ ❅ Ω i ❥ ✔ ✚ ✒ 1 � 2 ❥ Γ ij ❥ ❥ ❅ ❚ ij ❥ � ✑ ij ❥ ❅ Ω i ❥ ✓ + ✑ ij ❥ ❅ Ω i ❥ ❃ ✑ ✄ ❃ min ❃ ❃ i ❥ Ω i ❥ ❥ ❅ ❚ ij ❥ ❥ ❅ ❚ ij ❥ ✿ j ✷❱ ( i ) 11 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  18. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Assumptions Flux In addition to classical properties, we assume: ✽ ( V ❀ W ) ✷ ❲ 2 ❀ W � ∆ t ❵ [ ❋ ( W ❀ V ) � ❋ ( W ❀ W )] ✷ ❲ under the CFL condition ∆ t max ❥ ✕ k ( V ❀ W ) ❥ � ☛ 0 ❵ . k ✚ ✛ CFL Condition ∆ t n ✂ max ✖ ✄ ✂ ¯ ✕ n ij ❀ max 1 ✔ k ✔ 4 ✖ ij ❀ k i ✔ ☛ 0 j ✷❱ ( i ) ¯ ✕ n ❥ u n ij ✁ n ij ❀ k ❥ + c n ij ❀ ❥ u n ij ❀ k ✁ n ij ❀ k ❥ + c n ✟ ✠ i := max ij ❀ k j ✷❱ ( i ) 1 ✔ k ✔ 4 Optimization An optimal bound for the solution is given by: ✒ i = 1 3 ❀ ✑ ij = ❥ Γ ij ❥ ✓ = 3 ❥ ❅ Ω i ❥ ✖ ♦♣t ✑ ✄ ❥ Ω i ❥ ✿ i ❥ ❅ Ω i ❥ 11 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

  19. 1. Introduction 2. CFL 3. Admissibility 4. Simulations 5. Conclusion Example 12 / 17 Y. Penel (LJLL) Positive schemes for Euler / / - :

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend