expansion of real numbers
play

( ) -expansion of real numbers Shunji Ito & Taizo Sadahiro - PowerPoint PPT Presentation

( ) -expansion of real numbers Shunji Ito & Taizo Sadahiro Review of -expansions Let > 1 be a real number. A - representation of a real number x is an expression of the form, x = x k k + x k +1 k 1 +


  1. ( − β ) -expansion of real numbers Shunji Ito & Taizo Sadahiro

  2. Review of β -expansions Let β > 1 be a real number. A β - representation of a real number x is an expression of the form, x = x − k β k + x − k +1 β k − 1 + · · · + x 0 + x 1 β + x 2 β 2 + · · · , where k ≥ 0 is a certain integer and x i > 0 for i ≥ − k . It is denoted by x = ( x − k x − k +1 · · · x 0 . x 1 x 2 · · · ) β . ( − β ) -expansion of real numbers – p.1

  3. Review of β -expansions The β - transformation T β : [0 , 1) → [0 , 1) is defined by T β ( x ) = { βx } = βx mod 1 . β = 2 . 3 ( − β ) -expansion of real numbers – p.2

  4. Review of β -expansions Then, for each x ∈ [0 , 1) , we have a particular β -representation x = (0 . x 1 x 2 · · · ) β . where x i = ⌊ βT i − 1 ( x ) ⌋ for i ≥ 1 . β We call this representation the β -expansion of x . ( − β ) -expansion of real numbers – p.3

  5. Review of β -expansions A sequence ( x 1 , x 2 , . . . ) is admissible if there exists x ∈ [0 , 1) such that x = (0 . x 1 x 2 . . . ) β is the β -expansion of x . ▽ ( − β ) -expansion of real numbers – p.4

  6. Review of β -expansions A sequence ( x 1 , x 2 , . . . ) is admissible if there exists x ∈ [0 , 1) such that x = (0 . x 1 x 2 . . . ) β is the β -expansion of x . Theorem 2 (Parry) . A sequence ( x 1 , x 2 , . . . ) is admissible if and only if ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . where the sequence d ∗ (1 , β ) is defined as follows. ( − β ) -expansion of real numbers – p.4

  7. Review of β -expansions β -expansion of the fractional part { β } of β : { β } = β − ⌊ β ⌋ = (0 . d 1 d 2 . . . ) . Then we have a β -representation of 1 : 1 = (0 . ⌊ β ⌋ d 1 d 2 · · · ) β . � ( ⌊ β ⌋ , d 1 , d 2 , . . . , d i − 1 , d i − 1) 0 = d i +1 = d i +2 = · · · d ∗ (1 , β ) := otherwise ( ⌊ β ⌋ , d 1 , d 2 , . . . ) ( − β ) -expansion of real numbers – p.5

  8. Review of β -expansions Theorem 3 (Renyi) . The β -transformation is ergodic with unique invariant measure equivalent to the Lebesque measure. Theorem 4 (Parry) . Let h β : [0 , 1) → R be defined by 1 � h β ( x ) = β n , x ≤ s n where s 0 = 1 and s n = T n − 1 ( { β } ) for n ≥ 1 . Then the measure β dµ = h β dx is invariant under T β where dx denotes the Lebesgue measure. ( − β ) -expansion of real numbers – p.6

  9. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . ▽ ( − β ) -expansion of real numbers – p.7

  10. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . The value of β -transformation can be expressed as, T β ( x ) = { βx } ▽ ( − β ) -expansion of real numbers – p.7

  11. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . The value of β -transformation can be expressed as, T β ( x ) = { βx } = { βx − 0 } ▽ ( − β ) -expansion of real numbers – p.7

  12. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . The value of β -transformation can be expressed as, T β ( x ) = { βx } = { βx − 0 } +0 ▽ ( − β ) -expansion of real numbers – p.7

  13. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . The value of β -transformation can be expressed as, T β ( x ) = { βx } = { βx − 0 } +0 0 is the left endpoint of [0 , 1) . ▽ ( − β ) -expansion of real numbers – p.7

  14. Trivial remarks Parry’s criteria for the admissibility can be writen as, (0 , 0 , 0 , · · · ) � lex ( x 1 , x 2 , . . . ) ≺ lex d ∗ (1 , β ) , ∀ i ≥ 1 . The value of β -transformation can be expressed as, T β ( x ) = { βx } = { βx − 0 } +0 0 is the left endpoint of [0 , 1) . x i = ⌊ βT i − 1 ( x ) − 0 ⌋ ( − β ) -expansion of real numbers – p.7

  15. Definition: ( − β ) -representation β > 1 A ( − β ) -representation of a real number x is an expression of the form, x = x − k ( − β ) k + x − k +1 ( − β ) k − 1 + · · · + x 0 + x 1 x 2 ( − β )+ ( − β ) 2 + · · · , where k ≥ 0 is a certain integer and x i > 0 for i ≥ − k . ▽ ( − β ) -expansion of real numbers – p.8

  16. Definition: ( − β ) -representation β > 1 A ( − β ) -representation of a real number x is an expression of the form, x = x − k ( − β ) k + x − k +1 ( − β ) k − 1 + · · · + x 0 + x 1 x 2 ( − β )+ ( − β ) 2 + · · · , where k ≥ 0 is a certain integer and x i > 0 for i ≥ − k . It is denoted by x = ( x − k x − k +1 · · · x 0 . x 1 x 2 · · · ) − β . ( − β ) -expansion of real numbers – p.8

  17. Definition: ( − β ) -transformation � � − β 1 I β = [ l β , r β ) = β +1 , . β +1 ▽ ( − β ) -expansion of real numbers – p.9

  18. Definition: ( − β ) -transformation � � − β 1 I β = [ l β , r β ) = β +1 , . β +1 The ( − β ) -transformation T − β on I β is defined by T − β ( x ) = {− βx − l β } + l β ▽ ( − β ) -expansion of real numbers – p.9

  19. Definition: ( − β ) -transformation � � − β 1 I β = [ l β , r β ) = β +1 , . β +1 The ( − β ) -transformation T − β on I β is defined by T − β ( x ) = {− βx − l β } + l β � β � = − βx − − βx + β + 1 ( − β ) -expansion of real numbers – p.9

  20. Definition β = 2 . 3 1 β +1 β 1 − β +1 β +1 β − β +1 ▽ ( − β ) -expansion of real numbers – p.10

  21. Definition β = 2 . 3 1 β +1 β 1 − β +1 β +1 β − β +1 ▽ ( − β ) -expansion of real numbers – p.10

  22. Definition β = 2 . 3 1 β +1 2 1 0 β 1 − β +1 β +1 β − β +1 ( − β ) -expansion of real numbers – p.10

  23. Definition Then, for each x ∈ I β , we have a particular ( − β ) -representation x = ( . x 1 x 2 · · · ) − β . where x i = ⌊− βT i − 1 − β ( x ) − l β ⌋ for i ≥ 1 . We call this representation the ( − β ) -expansion of x . ( − β ) -expansion of real numbers – p.11

  24. Definition For a real number x not contained in I β , there is an integer d such that x/ ( − β ) d ∈ I β , hence we have the ( − β ) -expansion of x : x = ( x − d +1 x − d +2 · · · x 0 . x 1 x 2 · · · ) − β (1) where x − d + i = ⌊− βT i − 1 β x β +1 ⌋ . − β ( ( − β ) d ) + ( − β ) -expansion of real numbers – p.12

  25. Examples Example 1. β = 2 ▽ ( − β ) -expansion of real numbers – p.13

  26. Examples Example 2. β = 2 2 = (110 . ) − 2 , 3 = (111 . ) − 2 , 4 = (100 . ) − 2 , . . . 100 = (110100100 . ) − 2 , . . . ▽ ( − β ) -expansion of real numbers – p.13

  27. Examples Example 3. β = 2 2 = (110 . ) − 2 , − 1 = (11 . ) − 2 , 3 = (111 . ) − 2 , − 2 = (10 . ) − 2 , 4 = (100 . ) − 2 , − 3 = (1101 . ) − 2 , . . . . . . 100 = (110100100 . ) − 2 , − 100 = (11101100 . ) − 2 . . . . . . ▽ ( − β ) -expansion of real numbers – p.13

  28. Examples Example 4. β = 2 2 = (110 . ) − 2 , − 1 = (11 . ) − 2 , 3 = (111 . ) − 2 , − 2 = (10 . ) − 2 , 4 = (100 . ) − 2 , − 3 = (1101 . ) − 2 , . . . . . . 100 = (110100100 . ) − 2 , − 100 = (11101100 . ) − 2 . . . . . . 2 / 3 = (1 . 111111 · · · ) − 2 , 1 / 5 = ( . 011101110111 · · · ) − 2 . ▽ ( − β ) -expansion of real numbers – p.13

  29. Examples Example 5. β = 2 2 = (110 . ) − 2 , − 1 = (11 . ) − 2 , 3 = (111 . ) − 2 , − 2 = (10 . ) − 2 , 4 = (100 . ) − 2 , − 3 = (1101 . ) − 2 , . . . . . . 100 = (110100100 . ) − 2 , − 100 = (11101100 . ) − 2 . . . . . . 2 / 3 = (1 . 111111 · · · ) − 2 , 1 / 5 = ( . 011101110111 · · · ) − 2 . − 2 / 3 = (0 . 22222 · · · ) − 2 ▽ ( − β ) -expansion of real numbers – p.13

  30. Examples Example 6. β = 2 2 = (110 . ) − 2 , − 1 = (11 . ) − 2 , 3 = (111 . ) − 2 , − 2 = (10 . ) − 2 , 4 = (100 . ) − 2 , − 3 = (1101 . ) − 2 , . . . . . . 100 = (110100100 . ) − 2 , − 100 = (11101100 . ) − 2 . . . . . . 2 / 3 = (1 . 111111 · · · ) − 2 , 1 / 5 = ( . 011101110111 · · · ) − 2 . − 2 / 3 = (0 . 22222 · · · ) − 2 = (0 . 10101010 · · · ) − 2 . ( − β ) -expansion of real numbers – p.13

  31. Examples Example 7. β > 0 satisfies β 3 − β 2 − β − 1 = 0 . 2 = (111 . 1) − β , − 1 = (11 . 001) − β , 3 = (100 . 111001) − β , − 2 = (10 . 001) − β , 4 = (101 . 111001) − β , . . . . . . − 100 = (1100010010 . 01000100000100 100 = (111000110 . 00001100101111) − β , . . . . . . ( − β ) -expansion of real numbers – p.14

  32. Admissible sequences We say an integer sequence ( x 1 , x 2 , . . . ) is ( − β ) -admissible , if there exists a real number x ∈ I β such that x = ( . x 1 x 2 · · · ) − β is a ( − β ) -expansion. ▽ ( − β ) -expansion of real numbers – p.15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend