positivity of center subsets for qcd
play

Positivity of center subsets for QCD Mkiang whteigs pitoisve Falk - PowerPoint PPT Presentation

Positivity of center subsets for QCD Mkiang whteigs pitoisve Falk Bruckmann (Regensburg University) SIGN 2015, Atomki/Debrecen, Oct. 2015 with Jacques Bloch 1508.03522 Falk Bruckmann Positivity of center subsets for QCD 0 / 21 Introduction


  1. Positivity of center subsets for QCD Mkiang whteigs pitoisve Falk Bruckmann (Regensburg University) SIGN 2015, Atomki/Debrecen, Oct. 2015 with Jacques Bloch 1508.03522 Falk Bruckmann Positivity of center subsets for QCD 0 / 21

  2. Introduction QCD at high density/with chemical potential µ has a sign problem: path integral weight det / D �≥ 0 ⇒ no importance sampling ‘subsets’: add up configurations until the weight is positive works in: random matrix model with µ Bloch 11 fugacity expansion Bloch, FB, Kieburg, Splittorff, Verbaarschot 12 lattice QCD in 0+1 dimensions Bloch, FB, Wettig 13 no gauge action, solvable (Bilic, Demeterfi 88, Ravagli, Verbaarschot 07) here: higher-dimensional lattices analytical & numerical evidence for positivity of subsets Falk Bruckmann Positivity of center subsets for QCD 1 / 21

  3. Subset idea: an example ‘partition function’: (from the random matrix model) � ∞ f ( x ) = e − x 2 � 1 + x 2 − cosh ( µ ) x � Z = dx f ( x ) , ≶ 0 −∞ f � x � 2.0 1.5 1.0 0.5 2 x � 2 � 1 1 � 0.5 Falk Bruckmann Positivity of center subsets for QCD 2 / 21

  4. Subset idea: an example ‘partition function’: (from the random matrix model) � ∞ f ( x ) = e − x 2 � 1 + x 2 − cosh ( µ ) x � Z = dx f ( x ) , ≶ 0 −∞ f � x � 2.0 1.5 1.0 0.5 2 x � 2 � 1 1 � 0.5 subsets: add values at x and − x = integrate over even part � ∞ dx 1 � � Z = f ( x ) + f ( − x ) 2 −∞ � �� � e − x 2 ( 1 + x 2 ) > 0 Falk Bruckmann Positivity of center subsets for QCD 2 / 21

  5. Subsets in a random matrix model partition function for Φ 1 , 2 complex N × N matrices Osborn ’04 � � � e µ Φ 1 − e − µ Φ † m d Φ 1 , 2 e − N Tr (Φ 1 Φ † 1 +Φ 2 Φ † 2 ) det 2 Z ( µ ) = − e − µ Φ † 1 + e µ Φ 2 m subsets: measure and Gaussian invariant under Φ 1 , 2 → e i θ Φ 1 , 2 determinant changes (not a kind of gauge trafo!) add up the weight of those rotated matrices but before that: interpret the rotation as an imag. µ � � � e µ e i θ Φ 1 − e − µ e − i θ Φ † m 2 Z ( µ ) = d Φ 1 , 2 .. det − e − µ e − i θ Φ † 1 + e µ e i θ Φ 2 m = Z ( µ + i θ ) ∀ θ n − 1 = 1 � Z ( µ + ik / n ) n k = 0 Falk Bruckmann Positivity of center subsets for QCD 3 / 21

  6. fugacity expansion: 2 N � e q µ Z q Z ( µ ) = q = − 2 N Z q : canonical partition functions range of q from det being a polynomial in e ± µ of order 2 N put together: 2 N n − 1 e q µ 1 � � e 2 π ik / n · q Z ( µ ) = Z q n q = − 2 N k = 0 � �� � δ q mod n , 0 sum of n th roots (and most of their powers) vanish choose n > 2 N : Z ( µ ) = e 0 Z 0 = Z ( µ = 0 ) “no mu, no cry” actually, the µ -dep. disappears on the level of the integrand ⇒ the integrand is that at µ = 0 and thus is positive Falk Bruckmann Positivity of center subsets for QCD 4 / 21

  7. Subset definition in lattice QCD add up configurations ← multiplication of links with group elements (not gauge trafos!) formally using the invariance of the group measure [Haar] � � � � � Z = DU w [ U ] = d U µ ( x ) w [ U ] µ, x SU ( 3 ) Falk Bruckmann Positivity of center subsets for QCD 5 / 21

  8. Subset definition in lattice QCD add up configurations ← multiplication of links with group elements (not gauge trafos!) formally using the invariance of the group measure [Haar] � � � � � � V µ ( x ) − 1 U µ ( x ) Z = DU w [ U ] = d w [ U ] = DU w [ VU ] µ, x SU ( 3 ) Falk Bruckmann Positivity of center subsets for QCD 5 / 21

  9. Subset definition in lattice QCD add up configurations ← multiplication of links with group elements (not gauge trafos!) formally using the invariance of the group measure [Haar] � � � � � � V µ ( x ) − 1 U µ ( x ) Z = DU w [ U ] = d w [ U ] = DU w [ VU ] µ, x SU ( 3 ) cf. group U(1): � 2 π � 2 π � � 1 d φ = 1 dU U = e i φ d ( V − 1 U ) = d ( − φ V + φ ) = 2 π 2 π 0 0 U ( 1 ) U ( 1 ) (translation invariance on the circle) Falk Bruckmann Positivity of center subsets for QCD 5 / 21

  10. Center subsets in lattice QCD add up configurations ← multiplication of links with center elements center Z 3 : g = e 2 π ik / 3 1 3 with k = 0 , 1 , 2 commutes with all SU ( 3 ) group elements center subsets: � Z = DU w [ gU ] g ∈ Z 3 ⊗ Z 3 ⊗ . . . � 1 � = DU w [ gU ] # g g � �� � ? ≡ σ ( U ) > 0 if the subset weight σ is positive one can use importance sampling even if the original weight w was not positive Falk Bruckmann Positivity of center subsets for QCD 6 / 21

  11. observables can be measured, too alternative view: part of the integral = center sum performed deterministically, while remaining part = integral over the coset subject to sampling why center? gauge theories w/o center ( SU ( N ) adj , G 2 ) have no sign problem confinement criterion on Polyakov loop: tr P → g tr P (approx.) preserved/broken at low/high T (and µ ?) technically easy seemingly sufficient below: connected to imag. µ and diagrammatics similarity to clusters in Pott model Alford, Chandrasekharan, Cox, Wiese 01 Falk Bruckmann Positivity of center subsets for QCD 7 / 21

  12. Center subsets in 0+1 dimensions no plaquette ⇒ w = det / D temporal links can be gauged to a single link ← Polyakov loop P original weight, m = 0, one flavor: 3 × 3 ( 1 + e µ/ T P )( 1 + e − µ/ T P † ) w ( P ) = det = e − 3 µ/ T + e − 2 µ/ T 2 tr P + e − µ/ T � 2 tr P † + ( tr P ) 2 � + e 3 µ/ T + e 2 µ/ T 2 tr P † + e µ/ T � 2 tr P + ( tr P † ) 2 � + 2 + 2 | tr P | 2 � > 0 ( Re w matters, still � > 0 ) center subsets: 1 � � = e − 3 µ/ T + e 3 µ/ T + 2 + 2 | tr P | 2 > 0 w ( P )+ w ( e 2 π i / 3 P )+ w ( e − 2 π i / 3 P ) 3 positive, used for importance sampling � only baryon chemical potential µ B = 3 µ enters (see below) Falk Bruckmann Positivity of center subsets for QCD 8 / 21

  13. Collective subsets and imag. µ lattice implementation of µ on one (say last) time slice: e µ/ T U 0 , e − µ/ T U † 0 ‘collective subsets’: same center element, only on that time slice: 2 2 e µ/ T U 0 → e µ/ T · 1 e 2 π ik / 3 U 0 = 1 � � e µ/ T + 2 π ik / 3 · U 0 3 3 k = 0 k = 0 & analogously for U † 0 2 D µ/ T → 1 � det / det / D µ/ T + 2 π ik / 3 3 k = 0 & plaquette unchanged = adding/averaging 3 complex µ ’s = Roberge-Weiss symmetry (on integrals) utilized on integrands Falk Bruckmann Positivity of center subsets for QCD 9 / 21

  14. fugacity expansion: 2 e q µ/ T 1 � � � e q µ/ T / e 2 π ik / 3 · q det / / D µ/ T = D q → D q 3 q q k = 0 � �� � δ q mod 3 , 0 nonzero triality terms removed from the path integrand; the corresponding integrals = canonical partition functions vanish anyhow expansion in 3 µ = µ B these collective subsets attenuate the sign problem, but in general do not solve it ⇒ independent center multiplications on all temporal links Falk Bruckmann Positivity of center subsets for QCD 10 / 21

  15. Positivity of center subsets: numerical evidence 1+1 dimensional QCD one (unrooted) staggered quark µ = 0 . 3, m = 0 (sign problem worst) no plaquette = strong coupling approx. reweighting factors on 100,000 configurations (* means 1,000): N t × N x 2 × 2 4 × 2 6 × 2 8 × 2 10 × 2 phase-quenched 0.8134(3) 0.4361(4) 0.233(2) 0.130(2) 0.071(1) sign-quenched 0.9271(2) 0.6150(5) 0.355(3) 0.203(2) 0.109(2) collective subsets 0.9778(9) 0.777(4) 0.500(6) 0.303(8) 0.178(3) full subsets 1.0 1.0 1.0 ∗ 1.0 ∗ 1.0 ∗ N t × N x 2 × 4 4 × 4 6 × 4 2 × 6 2 × 8 pq 0.7934(5) 0.295(1) 0.0961(9) 0.7364(6) 0.6725(7) sq 0.9197(3) 0.442(2) 0.149(1) 0.8917(4) 0.8523(5) collective 0.959(1) 0.557(6) 0.214(8) 0.912(3) 0.867(2) full 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ Falk Bruckmann Positivity of center subsets for QCD 11 / 21

  16. higher dimensions on 200 random configurations: full subsets give reweighting factors 1 . 0 for 2 3 , 2 2 × 4 and 2 4 with gauge action β = 1 , 2 , 3 , 4 , 5 on 2 × 6 reweighting factors 1 . 0, 1 . 0, 0 . 984 ( 7 ) , 0 . 964 ( 13 ) , 0 . 972 ( 17 ) = mild sign problem subsets can always be used to attenuate the sign problem reweighting factor has to increase (Cauchy-Schwarz) or combined with other methods Falk Bruckmann Positivity of center subsets for QCD 12 / 21

  17. A first physics result quark number density as a function of µ and T (in lattice units) 3 3 N x =2 N x =6 3 2.5 2 2 n n 2 1 1 1.5 1 0 0 0.5 0 0.5 0.5 0.4 0.4 0.3 0.3 T T 0.2 0.2 0.6 0.6 0.5 0.5 0.1 0.4 0.1 0.4 0.3 0.3 µ µ 0.2 0.2 0 0 0.1 0.1 0 0 ( N t = 2 , . . . , 12 and N t = 2 , . . . , 8) Silver-Blaze property visible Falk Bruckmann Positivity of center subsets for QCD 13 / 21

  18. Positivity of center subsets: analytical proof for N t = 2 massless staggered determinant at µ = 0 the usual argument: D is antihermitian and chiral ∗ / ⇒ eigenvalues in pairs ± i · real ⇒ det / D µ = 0 ≥ 0 chiral ∗ : anticommutes with η 5 , η 5 ( x ev , od ) = ± 1 argument using quarks as Grassmannians: � D ¯ ψ D ψ exp ( ¯ det / ψ / D µ = 0 = D µ = 0 ψ ) and even-odd decomposition Falk Bruckmann Positivity of center subsets for QCD 14 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend