positive systems analysis via integral linear constraints
play

Positive systems analysis via integral linear constraints Sei Zhen - PowerPoint PPT Presentation

Positive systems analysis via integral linear constraints Sei Zhen Khong 1 , Corentin Briat 2 , and Anders Rantzer 3 1 Institute for Mathematics and its Applications University of Minnesota 2 Department of Biosystems Science and Engineering Swiss


  1. Positive systems analysis via integral linear constraints Sei Zhen Khong 1 , Corentin Briat 2 , and Anders Rantzer 3 1 Institute for Mathematics and its Applications University of Minnesota 2 Department of Biosystems Science and Engineering Swiss Federal Institute of Technology Zürich (ETH Zürich), Switzerland 3 Department of Automatic Control Lund University, Sweden IEEE Conference on Decision and Control 18 Dec 2015 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 1 / 16

  2. Positive systems analysis Quadratic forms are widely used for systems analysis: Lyapunov inequality, Kalman-Yakubovich-Popov Lemma, integral quadratic constraints etc. Analysis can be simplified if systems are known to be positive Lyapunov inequality: ◮ ∃ P ≻ 0 such that A T P + PA ≺ 0 ◮ ∃ z > 0 (element-wise) such that Az < 0 Kalman-Yakubovich-Popov Lemma: � ∗ � ( j ω I − A ) − 1 B � ( j ω I − A ) − 1 B � ∀ ω ∈ [ 0 , ∞ ] Q ≺ 0 ◮ I I ◮ ∃ x , u , p ≥ 0 such that � � � A T � x Ax + Bu ≤ 0 + and Q p ≤ 0 B T u The theory of integral linear constraints (ILCs)? Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 2 / 16

  3. Outline Positive closed-loop systems 1 Robust stability 2 Geometric intuition 3 Example 4 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 3 / 16

  4. Positive closed-loop systems Outline Positive closed-loop systems 1 Robust stability 2 Geometric intuition 3 Example 4 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 3 / 16

  5. Positive closed-loop systems Positive systems A system G is said to be positive if u ( t ) ≥ 0 ∀ t ≥ 0 = ⇒ y ( t ) = ( Gu )( t ) ≥ 0 ∀ t ≥ 0 d 2 y 1 u 1 G 1 ! d 1 y 2 u 2 G 2 ! Given a positive feedback interconnection of two positive systems G 1 and G 2 , is the closed-loop map ( d 1 , d 2 ) �→ ( u 1 , y 1 , u 2 , y 2 ) always positive? No ! Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 4 / 16

  6. Positive closed-loop systems Positive systems A system G is said to be positive if u ( t ) ≥ 0 ∀ t ≥ 0 = ⇒ y ( t ) = ( Gu )( t ) ≥ 0 ∀ t ≥ 0 d 2 y 1 u 1 G 1 ! d 1 y 2 u 2 G 2 ! Given a positive feedback interconnection of two positive systems G 1 and G 2 , is the closed-loop map ( d 1 , d 2 ) �→ ( u 1 , y 1 , u 2 , y 2 ) always positive? No ! Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 4 / 16

  7. Positive closed-loop systems Positive systems A simple counterexample: ! d 2 = 0 y 1 u 1 2 d 1 y 2 u 2 ! 1 1 d 1 �→ u 1 = 1 − 2 = − 1 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 5 / 16

  8. Positive closed-loop systems Feedback interconnections d 2 y 1 u 1 G 1 ! d 1 y 2 u 2 G 2 ! G 1 ( s ) = C 1 ( sI − A 1 ) − 1 B 1 + D 1 ˆ G 2 ( s ) = C 2 ( sI − A 2 ) − 1 B 2 + D 2 ˆ A 1 and A 2 are Metzler and B 1 ≥ 0 , B 2 ≥ 0 , C 1 ≥ 0 , C 2 ≥ 0 , D 1 ≥ 0 , and D 2 ≥ 0 (element-wise) implies G 1 and G 2 are positive Positivity of closed-loop map [Ebihara et. al. 2011] If ρ ( D 1 D 2 ) < 1 , then ( d 1 , d 2 ) �→ ( u 1 , y 1 , u 2 , y 2 ) is positive Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 6 / 16

  9. Positive closed-loop systems Feedback interconnections d 2 u 1 y 1 G 1 ! d 1 y 2 u 2 G 2 ! Suppose (nonlinear) G i : L 1 e → L 1 e are causal and positive, define � P T +∆ T ( G i x − G i y ) � 1 α ( G i ) := sup inf sup � P T +∆ T ( x − y ) � 1 ∆ T > 0 T > 0 x , y ∈ L 1 e ; PT x = PT y PT +∆ T ( x − y ) � = 0 Positivity of closed-loop map If α ( G 1 ) α ( G 2 ) < 1 , then ( d 1 , d 2 ) �→ ( u 1 , y 1 , u 2 , y 2 ) is positive Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 7 / 16

  10. Robust stability Outline Positive closed-loop systems 1 Robust stability 2 Geometric intuition 3 Example 4 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 7 / 16

  11. Robust stability Robust stability of feedback systems d 2 y 1 u 1 G 1 ! d 1 y 2 u 2 G 2 ! Integral quadratic constraints (IQCs) [Megretski & Rantzer 97] Given bounded, causal G 1 : L 2 e → L 2 e and G 2 : L 2 e → L 2 e , suppose there exists linear Π : L 2 → L 2 such that [ τ G 1 , G 2 ] is well-posed for all τ ∈ [ 0 , 1 ] ; �� u � � � ∞ v ( t ) T (Π v )( t ) dt ≥ 0 ∀ v ∈ G ( τ G 1 ) := ∈ L 2 : y = τ G 1 u , τ ∈ [ 0 , 1 ] ; 0 y � ∞ � ∞ | w ( t ) | 2 dt w ( t ) T (Π w )( t ) dt ≤ − ǫ ∀ w ∈ G ′ ( G 2 ) , 0 0 then [ G 1 , G 2 ] is stable Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 8 / 16

  12. Robust stability Integral quadratic constraint (IQC) examples Structure of G 1 Π Condition � 0 � I G 1 is passive I 0 � x ( j ω ) I � 0 � G 1 � ≤ 1 x ( j ω ) ≥ 0 0 − x ( j ω ) I � X ( j ω ) Y ( j ω ) � X = X ∗ ≥ 0 , Y = − Y ∗ G 1 ∈ [ − 1 , 1 ] Y ( j ω ) ∗ − X ( j ω ) � X � Y X = X ∗ ≥ 0 , Y = − Y ∗ G 1 ( t ) ∈ [ − 1 , 1 ] Y T − X G 1 ( s ) = e − θ s − 1 , � x ( j ω ) ρ ( ω ) 2 � 0 ρ ( ω ) = 2 max sin ( θω/ 2 ) for θ ∈ [ 0 , θ 0 ] − x ( j ω ) 0 | θ |≤ θ 0 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 9 / 16

  13. Robust stability Robust stability of positive feedback systems y 1 d 2 u 1 G 1 ! d 1 y 2 u 2 G 2 ! Integral linear constraints 1 e → L p 1 e and G 2 : L p Given bounded, causal, linear G 1 : L m 1 e → L m 1 e , suppose there exists Π ∈ R 1 × m + p such that [ τ G 1 , G 2 ] is well-posed and positive for all τ ∈ [ 0 , 1 ] ; �� u � � � ∞ Π v ( t ) dt ≥ 0 ∀ v ∈ G + ( τ G 1 ) := ∈ L 1 + : y = τ G 1 u , τ ∈ [ 0 , 1 ] ; 0 y � ∞ � ∞ ∀ w ∈ G ′ Π w ( t ) dt ≤ − ǫ | w ( t ) | dt + ( G 2 ) , 0 0 then [ G 1 , G 2 ] is stable When G 1 and G 2 are LTI, conditions can be stated as � ˆ � � � I G 2 ( 0 ) Π ≥ 0 and Π < 0 τ ˆ G 1 ( 0 ) I Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 10 / 16

  14. Geometric intuition Outline Positive closed-loop systems 1 Robust stability 2 Geometric intuition 3 Example 4 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 10 / 16

  15. Geometric intuition Geometric interpretation of integral quadratic constrains G ( G 1 ) G ′ ( G 2 ) Feedback stability G ( G 1 ) + G ′ ( G 2 ) = L 2 ; G ( G 1 ) ∩ G ′ ( G 2 ) = { 0 } Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 11 / 16

  16. Geometric intuition Geometric interpretation of integral quadratic constraints G ( G 1 ) G ′ ( G 2 ) Integral quadratic constraints (IQCs) � ∞ v ( t ) T (Π v )( t ) dt ≥ 0 ∀ v ∈ G ( G 1 ) ; 0 � ∞ � ∞ | w ( t ) | 2 dt ∀ w ∈ G ′ ( G 2 ) w ( t ) T (Π w )( t ) dt ≤ − ǫ 0 0 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 12 / 16

  17. Geometric intuition Geometric interpretation of integral linear constraints G + ( G 1 ) G ′ + ( G 2 ) Feedback stability G + ( G 1 ) + G ′ + ( G 2 ) = L 1 + ; G + ( G 1 ) ∩ G ′ + ( G 2 ) = { 0 } Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 13 / 16

  18. Geometric intuition Geometric interpretation of integral linear constraints G + ( G 1 ) G ′ + ( G 2 ) Integral linear constraints � ∞ Π v ( t ) dt ≥ 0 ∀ v ∈ G + ( G 1 ) ; 0 � ∞ � ∞ ∀ w ∈ G ′ Π w ( t ) dt ≤ − ǫ | w ( t ) | dt + ( G 2 ) 0 0 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 14 / 16

  19. Example Outline Positive closed-loop systems 1 Robust stability 2 Geometric intuition 3 Example 4 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 14 / 16

  20. Example LTI systems d 2 u 1 y 1 G 1 ! d 1 y 2 u 2 G 2 ! G 1 ( s ) = C 1 ( sI − A 1 ) − 1 B 1 + D 1 ˆ G 2 ( s ) = C 2 ( sI − A 2 ) − 1 B 2 + D 2 ˆ A 1 and A 2 are Metzler, Hurwitz and B 1 ≥ 0 , B 2 ≥ 0 , C 1 ≥ 0 , C 2 ≥ 0 , D 1 ≥ 0 , and D 2 ≥ 0 Robust stability [Ebihara et. al. 2011] [Tanaka et. al. 2013] If ρ (ˆ G 1 ( 0 )ˆ G 2 ( 0 )) < 1 , then [ G 1 , G 2 ] is stable Can be recovered with integral linear constraint theorem with Π := z T � ˆ � G 1 ( 0 ) − I , where z T (ˆ G 1 ( 0 )ˆ G 2 ( 0 ) − I ) < 0 Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 15 / 16

  21. Example Conclusions: Sufficient condition for positivity to be preserved under feedback Developed integral linear constraints theory for analysis of feedback interconnections with positive closed-loop mappings Many extensions possible: ◮ Positive coprime factorisations ◮ Integral linear constraints with time-varying multipliers ◮ LMI conditions for verifying integral linear constraints ◮ Stabilisation of open-loop unstable dynamics? Khong, Briat, Rantzer (UMN, ETH, Lund) Integral linear constraints CDC 12/18/2015 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend