pointwise convergence of the feasibility violation for
play

Pointwise convergence of the feasibility violation for Moreau-Yosida - PowerPoint PPT Presentation

Pointwise convergence of the feasibility violation for Moreau-Yosida regularized optimal control problems. Winnifried Wollner Fachbereich Mathematik Optimierung und Approximation, Universitt Hamburg Workshop on Control and Optimization of


  1. Pointwise convergence of the feasibility violation for Moreau-Yosida regularized optimal control problems. Winnifried Wollner Fachbereich Mathematik Optimierung und Approximation, Universität Hamburg Workshop on Control and Optimization of PDEs Graz, October 10-14, 2011

  2. State-Constrained optimal control W. Wollner Outline of the talk Pointwise Convergence 1 Introduction & Previous Results Error Estimates Examples Application to Gradient Constraints on the State 2 Motivation Existence & Optimality Conditions A Priori Error Estimation

  3. State-Constrained optimal control W. Wollner Content Pointwise Convergence 1 Introduction & Previous Results Error Estimates Examples Application to Gradient Constraints on the State 2 Motivation Existence & Optimality Conditions A Priori Error Estimation

  4. State-Constrained optimal control W. Wollner Model Problem Consider Ω ⊂ R 2 : Minimize Q × V J ( q , u ) := 1 2 � u − u d � 2 + 1 2 � q � 2 s.t. − ∆ u = q in Ω ( P ) u = 0 on ∂ Ω u ≥ u c in Ω and its regularization: Minimize Q × V J ( q , u ) + γ 2 � ( u c − u ) + � 2 ( P γ ) s.t. − ∆ u = q in Ω u = 0 on ∂ Ω (Assume throughout the existence of a Slater point)

  5. State-Constrained optimal control W. Wollner Known Results Various contributions: Ito, Kunisch, Hintermüller, Hinze, M. Ulbrich, . . . Assuming that any solution u ∈ C (Ω) (in fact u ∈ C 0 ,β (Ω) ) gives: ( P γ ) → ( P ) as γ → ∞ Sometimes even rates for the convergence: Depends on the feasibility violation to vanish in appropriate norms. (Hintermüller, Hinze): � q − q γ � 2 ≤ C ( γ − 1 + � ( u c − u γ ) + � ∞ ) ≤ c γ − β 2 + 2 β (M. Ulbrich): � q − q γ � 2 ≤ c γ 4 13 + ǫ Looks independent of β but needs H 2 regularity

  6. State-Constrained optimal control W. Wollner A Simple Estimate Lemma Let ( q , u ) be the solution to ( P ) and ( q γ , u γ ) the solution to ( P γ ) . Assume that it holds � ( u c − u γ ) + � ∞ ≤ c γ − θ for some θ > 0 then 0 ≤ J ( q , u ) − J ( q γ , u γ ) ≤ c γ − θ . and � q − q γ � 2 ≤ c γ − θ . hold. Lemma For the solution ( q γ , u γ ) of ( P γ ) it holds � ( u c − u γ ) + � 2 ≤ c γ − 1 � ( u c − u γ ) + � ∞ ≤ c γ − 1 − θ

  7. State-Constrained optimal control W. Wollner A Bootstrapping Argument Lemma Let ( q γ , u γ ) be a solution of ( P γ ) . Assume that u c − u γ ∈ C 0 ,β (Ω) and that for some α > 0 it holds � ( u c − u γ ) + � 2 ≤ c γ − α then we have � ( u c − u γ ) + � ∞ ≤ c γ − α β 2 + 2 β . Theorem Under the assumptions above it holds � ( u c − u γ ) + � 2 ≤ c γ − 1 − β 2 + β then we have β � ( u c − u γ ) + � ∞ ≤ c γ − 2 + β .

  8. State-Constrained optimal control W. Wollner Comments Results can be improved depending on the shape of the active set. Maximum attained on a line: � ( u c − u γ ) + � ∞ ≤ c γ − β 1 + β . Maximum attained on a volume: � ( u c − u γ ) + � ∞ ≤ c γ − 1 .

  9. State-Constrained optimal control W. Wollner Example with a point measure (Cherednichenko, Krumbiegel, Rösch, 2008) 1 L-2 Norm 0.1 Point Error γ − 1 − 1 / 3 0.01 γ − 1 / 3 0.001 Feasibility violation 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1 10 100 1000 10000 100000 1e+06 Value of γ Figure: Convergence of � ( u c − u γ ) + � ∞

  10. State-Constrained optimal control W. Wollner Example with a line measure (Benedix, Vexler, 2009) 100 L-2 Norm 10 Point Error γ − 1 − 3 / 4 1 γ − 3 / 4 Feasibility violation 0.1 0.01 0.001 0.0001 1e-05 1e-06 1 10 100 1000 10000 Value of γ Figure: Convergence of � ( u c − u γ ) + � ∞

  11. State-Constrained optimal control W. Wollner Content Pointwise Convergence 1 Introduction & Previous Results Error Estimates Examples Application to Gradient Constraints on the State 2 Motivation Existence & Optimality Conditions A Priori Error Estimation

  12. State-Constrained optimal control W. Wollner Model Problem Consider: Minimize Q × V 1 2 � u − u d � 2 + α r � q � r L r s.t. − ∆ u = q in Ω ( P ) u = 0 on ∂ Ω |∇ u | 2 ≤ c in Ω Discretize with FEM A priori error analysis: Deckelnick, Günther, Hinze; Ortner, Wollner � q − q h � r = O ( h 1 − 2 / t ) Need a ‘smooth’ domain to have u ∈ C 1 (Ω) . What if Ω ⊂ R 2 is not smooth but is a (nonconvex) polygon?

  13. State-Constrained optimal control W. Wollner Model Problem Consider: Minimize Q × V 1 2 � u − u d � 2 + α r � q � r L r s.t. − ∆ u = q in Ω ( P ) u = 0 on ∂ Ω |∇ u | 2 ≤ c in Ω Discretize with FEM A priori error analysis: Deckelnick, Günther, Hinze; Ortner, Wollner � q − q h � r = O ( h 1 − 2 / t ) Need a ‘smooth’ domain to have u ∈ C 1 (Ω) . What if Ω ⊂ R 2 is not smooth but is a (nonconvex) polygon?

  14. State-Constrained optimal control W. Wollner Existence The solution u of the state equation can be rewritten (one corner, a.a. t ): u = u r + u s u r ∈ W 2 , t (Ω) ∩ H 1 0 (Ω) ⊂ C 1 (Ω) ( t > 2) u s = � j < 2 ω c α j r j π/ω ϕ ( θ ) π t ′ j = 1 j π ω c � = 1 u ∈ W 1 , ∞ (Ω) implies α j = 0 And − ∆ : W := W 2 , t (Ω) ∩ H 1 0 (Ω) �→ I = ∆ W has a continuous inverse. → Solution to ( P ) by standard arguments on the control space Q = I ∩ L r (Ω) .

  15. State-Constrained optimal control W. Wollner Necessary Conditions For ( q , u ) ∈ I × W there exist µ ∈ C (Ω) ∗ and a function z ∈ L t ′ (Ω) s.t. ∀ ϕ ∈ H 1 ( ∇ u , ∇ ϕ ) = ( q , ϕ ) 0 (Ω) , �− ∆ ϕ, z � = ( u − u d , ϕ ) + � µ, ∇ u ∇ ϕ � ∀ ϕ ∈ W , ( q | q | r − 2 , δ q ) = −� δ q , z � ∀ δ q ∈ Q ∩ I , � µ, ϕ � ≤ 0 ∀ ϕ ∈ C (Ω) , ϕ ≤ 0 , 0 = � µ, |∇ u | 2 − c � . Note that z is determined modulo I ⊥ only. 1 − 2 / t r − 1 , r (Ω) → q ∈ W

  16. State-Constrained optimal control W. Wollner Discretization & Simple Error Estimates Minimize I × V h J ( q h , u h ) ( P ⊥ h ) s.t. ( ∇ u h , ∇ ϕ ) = ( q , ϕ ) ∀ ϕ ∈ V h |∇ u h | 2 ≤ c in Ω We follow the ideas of Ortner, Wollner Numer. Math. (2011) Theorem Let ( q , u ) be solutions to ( P ) and ( q h , u h ) solutions to ( P ⊥ h ) then there exists t > 2 and a constant C such that for any ǫ > 0 : h ) | ≤ Ch 1 − 2 / t − ǫ =: Ch β | J ( q , u ) − J ( q ⊥ h , u ⊥ and r ≤ Ch β � q − q h � r

  17. State-Constrained optimal control W. Wollner Regularization Minimize Q × V h J ( q h , u h ) ( P h ) s.t. ( ∇ u h , ∇ ϕ ) = ( q , ϕ ) ∀ ϕ ∈ V h |∇ u h | 2 ≤ c in Ω Problem: Continuous solution u h to q h is not in W 1 , ∞ . Minimize Q × V J ( q , u ) = J ( q , u ) + γ 2 � ( |∇ u | 2 − c ) + � 2 ( P γ ) s.t. ( ∇ u , ∇ ϕ ) = ( q , ϕ ) ∀ ϕ ∈ V |∇ u | 2 ≤ c in Ω Observation: � ( |∇ u h | 2 − c ) + � 2 ≤ ch 2 π/ω Allows to estimate the distance between ( P h ) and ( P γ ) .

  18. State-Constrained optimal control W. Wollner Error Estimates Theorem Assume that γ | 2 − c ) + � ∞ ≤ c γ − θ � ( |∇ u r holds then | J ( q γ , u γ ) − J ( q , u ) | ≤ c γ − θ Lemma It holds − 1 − π/ω | α γ | ≤ c γ 1 + π/ω γ | 2 − c ) + � ∞ ≤ c γ β 1 − π/ω − � ( |∇ u r 1 + β 1 + π/ω Note that the rates can be improved depending on the type of the active set.

  19. State-Constrained optimal control W. Wollner Error Estimates - cont. Theorem It holds for the solution ( q h , u h ) to ( P h ) and ( q , u ) to ( P ) that β 2 π/ω ( 1 − π/ω ) | J ( q , u ) − J ( q , u ) | ≤ ch 1 + π/ω + 2 β

  20. State-Constrained optimal control W. Wollner Example Optimal State State Unconstraint

  21. State-Constrained optimal control W. Wollner Example Optimal Control on Mesh 5 Optimal Control on Mesh 6

  22. State-Constrained optimal control W. Wollner Error in the Cost Functional Global refinement Local refinement O ( N − 0 . 25 ) 0.1 Relativ Functional error 0.01 100 1000 10000 100000 Nodes Figure: Error in the cost functional

  23. State-Constrained optimal control W. Wollner Conclusions and Outlook New (improved) error estimates for Moreau-Yosida regularized state constraints. Shown existence and necessary optimality conditions on non smooth domains. Derived error estimates for the discretization error. Thank you for your attention!

  24. State-Constrained optimal control W. Wollner Conclusions and Outlook New (improved) error estimates for Moreau-Yosida regularized state constraints. Shown existence and necessary optimality conditions on non smooth domains. Derived error estimates for the discretization error. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend