optimal control of allen cahn equations with singular
play

Optimal control of AllenCahn equations with singular potentials and - PowerPoint PPT Presentation

Weierstrass Institute for Applied Analysis and Stochastics Optimal control of AllenCahn equations with singular potentials and dynamic boundary conditions Jrgen Sprekels (joint work with P . Colli) Mohrenstrasse 39 10117 Berlin


  1. Weierstrass Institute for Applied Analysis and Stochastics Optimal control of Allen–Cahn equations with singular potentials and dynamic boundary conditions Jürgen Sprekels (joint work with P . Colli) Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de DIMO 2013

  2. The optimal control problem Consider the IVP with dynamic boundary condition y t − ∆ y + f ′ ( y ) = u a.e. in Q , (1) ∂ t y Γ − ∆ Γ y Γ + ∂ n y + g ′ ( y Γ ) = u Γ , y | Γ = y Γ , a.e. on Σ , (2) y ( 0 ) = y 0 a.e. in Ω , y Γ ( 0 ) = y 0 Γ a.e. on Γ . (3) Here, we have n : ∆ Γ : Laplace–Beltrami operator, outward unit normal derivative; � f , g : given nonlinearities; � u , u Γ : control functions; � y 0 ∈ H 1 ( Ω ) : initial datum s.t. y 0 | Γ = y 0 Γ . � Optimal control ... · DIMO 2013 · Page 2 (26)

  3. The optimal control problem We introduce the Banach spaces H : = L 2 ( Ω ) , V : = H 1 ( Ω ) , H Γ : = L 2 ( Γ ) , V Γ : = H 1 ( Γ ) , H : = L 2 ( Q ) × L 2 ( Σ ) , X : = L ∞ ( Q ) × L ∞ ( Σ ) , � ( y , y Γ ) : y ∈ H 1 ( 0, T ; H ) ∩ C 0 ([ 0, T ] ; V ) ∩ L 2 ( 0, T ; H 2 ( Ω )) , Y : = � y Γ ∈ H 1 ( 0, T ; H Γ ) ∩ C 0 ([ 0, T ] ; V Γ ) ∩ L 2 ( 0, T ; H 2 ( Γ )) , y Γ = y | Γ , endowed with their respective natural norms. We also assume: (A1) There are given functions z Q ∈ L 2 ( Q ) , z Σ ∈ L 2 ( Σ ) , z T ∈ V , z Γ , T ∈ V Γ , u 2 ∈ L ∞ ( Q ) with � u 1 , � � u 1 ≤ � u 2 a.e. in Q , u 2 Γ ∈ L ∞ ( Σ ) with � u 1 Γ , � � u 1 Γ ≤ � u 2 Γ a.e. on Σ . Optimal control ... · DIMO 2013 · Page 3 (26)

  4. The optimal control problem (CP) Minimize the (tracking-type) cost functional T T � � � � � � J (( y , y Γ ) , ( u , u Γ )) : = β 1 � 2 d x d t + β 2 | y Γ − z Σ | 2 d Γ d t � y − z Q 2 2 0 0 Ω Γ � � + β 3 | y ( · , T ) − z T | 2 d x + β 4 | y Γ ( · , T ) − z Γ , T | 2 d Γ 2 2 Ω Γ T T � � � � + β 5 | u | 2 d x d t + β 6 | u Γ | 2 d Γ d t (4) 2 2 0 Ω 0 Γ subject to the state system (1)–(3) and to the control constraint ( u , u Γ ) ∈ U ad : = { ( w , w Γ ) ∈ H : � u 1 ≤ w ≤ � u 2 a.e. in Q , u 1 Γ ≤ w Γ ≤ � � a.e. on Σ } . u 2 Γ (5) Optimal control ... · DIMO 2013 · Page 4 (26)

  5. General assumptions f = f 1 + f 2 , g = g 1 + g 2 , where f 2 , g 2 ∈ C 3 [ 0, 1 ] , and where (A2) f 1 , g 1 ∈ C 3 ( 0, 1 ) are convex and satisfy: r ց 0 f ′ r ց 0 g ′ r ր 1 f ′ r ր 1 g ′ 1 ( r ) = lim 1 ( r ) = − ∞ , 1 ( r ) = lim 1 ( r ) = + ∞ lim lim (6) | f ′ 1 ( r ) | ≤ M 1 + M 2 | g ′ ∃ M 1 ≥ 0, M 2 > 0 : 1 ( r ) | ∀ r ∈ ( 0, 1 ) . (7) Optimal control ... · DIMO 2013 · Page 5 (26)

  6. General assumptions f = f 1 + f 2 , g = g 1 + g 2 , where f 2 , g 2 ∈ C 3 [ 0, 1 ] , and where (A2) f 1 , g 1 ∈ C 3 ( 0, 1 ) are convex and satisfy: r ց 0 f ′ r ց 0 g ′ r ր 1 f ′ r ր 1 g ′ 1 ( r ) = lim 1 ( r ) = − ∞ , 1 ( r ) = lim 1 ( r ) = + ∞ lim lim (6) | f ′ 1 ( r ) | ≤ M 1 + M 2 | g ′ ∃ M 1 ≥ 0, M 2 > 0 : 1 ( r ) | ∀ r ∈ ( 0, 1 ) . (7) y 0 Γ = y 0 | Γ , f 1 ( y 0 ) ∈ L 1 ( Ω ) , g 1 ( y 0 Γ ) ∈ L 1 ( Γ ) , and y 0 ∈ V , (A3) 0 < y 0 < 1 a.e. in Ω , 0 < y 0 Γ < 1 a.e. on Γ . (8) Optimal control ... · DIMO 2013 · Page 5 (26)

  7. General assumptions f = f 1 + f 2 , g = g 1 + g 2 , where f 2 , g 2 ∈ C 3 [ 0, 1 ] , and where (A2) f 1 , g 1 ∈ C 3 ( 0, 1 ) are convex and satisfy: r ց 0 f ′ r ց 0 g ′ r ր 1 f ′ r ր 1 g ′ 1 ( r ) = lim 1 ( r ) = − ∞ , 1 ( r ) = lim 1 ( r ) = + ∞ lim lim (6) | f ′ 1 ( r ) | ≤ M 1 + M 2 | g ′ ∃ M 1 ≥ 0, M 2 > 0 : 1 ( r ) | ∀ r ∈ ( 0, 1 ) . (7) y 0 Γ = y 0 | Γ , f 1 ( y 0 ) ∈ L 1 ( Ω ) , g 1 ( y 0 Γ ) ∈ L 1 ( Γ ) , and y 0 ∈ V , (A3) 0 < y 0 < 1 a.e. in Ω , 0 < y 0 Γ < 1 a.e. on Γ . (8) U ⊂ X is open such that U ad ∈ U , and there is some R > 0 with (A4) � u � L ∞ ( Q ) + � u Γ � L ∞ ( Σ ) ≤ R ∀ ( u , u Γ ) ∈ U . (9) Optimal control ... · DIMO 2013 · Page 5 (26)

  8. General assumptions Remarks: 1. (A2) implies that the singularity on the boundary grows at least with the same order as the one in the bulk. Optimal control ... · DIMO 2013 · Page 6 (26)

  9. General assumptions Remarks: 1. (A2) implies that the singularity on the boundary grows at least with the same order as the one in the bulk. 2. Typical nonlinearities satisfying (5) and (6) are f 1 ( r ) = c 1 ( r log ( r ) + ( 1 − r ) log ( 1 − r )) , g 1 ( r ) = c 2 ( r log ( r ) + ( 1 − r ) log ( 1 − r )) , where c 1 > 0 , c 2 > 0 . Optimal control ... · DIMO 2013 · Page 6 (26)

  10. General assumptions Remarks: 1. (A2) implies that the singularity on the boundary grows at least with the same order as the one in the bulk. 2. Typical nonlinearities satisfying (5) and (6) are f 1 ( r ) = c 1 ( r log ( r ) + ( 1 − r ) log ( 1 − r )) , g 1 ( r ) = c 2 ( r log ( r ) + ( 1 − r ) log ( 1 − r )) , where c 1 > 0 , c 2 > 0 . 3. We assume here a differentiable situation. The results are submitted to SIAM J. Control Optimization. A non-differentiable case is studied in Colli–Farshbaf-Shaker–Sprekels (in preparation): there, we assume that f 1 = g 1 = I [ 0,1 ] , so that we have to replace f ′ 1 , g ′ 1 in (1) and (2) by the subdifferential ∂ I [ 0,1 ] . Optimal control ... · DIMO 2013 · Page 6 (26)

  11. The state system The following result is a special case of results proved in Calatroni–Colli (Nonlinear Anal. 2013): Theorem 1: Suppose that (A2) , (A3) are satisfied. Then we have: (i) The state system (1)–(3) has for any ( u , u Γ ) ∈ H a unique solution ( y , y Γ ) ∈ Y such that 0 < y < 1 a.e. in Q , 0 < y Γ < 1 a.e. on Σ . (10) (ii) If also (A4) holds, ∃ K ∗ 1 > 0 : for any ( u , u Γ ) ∈ U the associated solution ( y , y Γ ) ∈ Y satisfies � ( y , y Γ ) � Y ≤ K ∗ � f ′ ( y ) � L 2 ( Q ) + � g ′ ( y Γ ) � L 2 ( Σ ) ≤ K ∗ 1 , 1 . (11) Moreover, ∃ K ∗ 2 > 0 : whenever ( u 1 , u 1 Γ ) , ( u 2 , u 2 Γ ) ∈ U are given, then we have � y 1 − y 2 � C 0 ([ 0, T ] ; H ) + �∇ ( y 1 − y 2 ) � L 2 ( Q ) + � y 1 Γ − y 2 Γ � C 0 ([ 0, T ] ; H Γ ) + �∇ Γ ( y 1 Γ − y 2 Γ ) � L 2 ( Σ ) � � ≤ K ∗ � u 1 − u 2 � L 2 ( Q ) + � u 1 Γ − u 2 Γ � L 2 ( Σ ) . (12) 2 Optimal control ... · DIMO 2013 · Page 7 (26)

  12. The state system Remark: 4. Owing to Theorem 1 , the control-to-state mapping S : ( u , u Γ ) �→ S ( u , u Γ ) : = ( y , y Γ ) is defined as a mapping from H into Y . Moreover, S is Lipschitz continuous when viewed as a mapping from the subset U of H into the space � � × � � C 0 ([ 0, T ] ; H ) ∩ L 2 ( 0, T ; V ) C 0 ([ 0, T ] ; H Γ ) ∩ L 2 ( 0, T ; V Γ ) . We now come to a linearized version of Theorem 1 , which will play a central role in the derivation of first-order necessary and second-order sufficient conditions for (CP) . Optimal control ... · DIMO 2013 · Page 8 (26)

  13. A linear system Theorem 2: Let ( u , u Γ ) ∈ H , c 1 ∈ L ∞ ( Q ) , c 2 ∈ L ∞ ( Σ ) , as well as ( w 0 , w 0 Γ ) ∈ V × V Γ with w 0 | Γ = w 0 Γ be given. Then we have: (i) The linear IBVP w t − ∆ w + c 1 ( x , t ) w = u a.e. in Q , (13) ∂ t w Γ − ∆ Γ w Γ + ∂ n w + c 2 ( x , t ) w Γ = u Γ , w | Γ = w Γ , a.e. on Σ , (14) w ( · , 0 ) = w 0 w Γ ( · , 0 ) = w 0 Γ a.e. in Ω , a.e. on Γ , (15) has a unique solution ( w , w Γ ) ∈ Y . (ii) There is some � C > 0 such that: whenever w 0 = 0 and w 0 Γ = 0 then � ( w , w Γ ) � Y ≤ � C � ( u , u Γ ) � H . (16) Optimal control ... · DIMO 2013 · Page 9 (26)

  14. A linear system Idea of Proof: (i) is more or less a consequence of Theorem 1 . Now let w 0 = 0 , w 0 Γ = 0 . Testing (13) by w t and applying Young’s and Gronwall’s inequalities, we easily find � w � H 1 ( 0, T ; H ) ∩ C 0 ([ 0, T ] ; V ) + � w Γ � H 1 ( 0, T ; H Γ ) ∩ C 0 ([ 0, T ] ; V Γ ) ≤ C 1 � ( u , u Γ ) � H . Comparison in (13) yields � ∆ w � L 2 ( Q ) ≤ C 2 � ( u , u Γ ) � H . Then, applying a standard embedding result, � w � L 2 ( 0, T ; H 3/2 ( Ω )) ≤ C 3 � ( u , u Γ ) � H , whence, by the trace theorem, � ∂ n w � L 2 ( 0, T ; H Γ ) ≤ C 4 � ( u , u Γ ) � H . Optimal control ... · DIMO 2013 · Page 10 (26)

  15. A linear system But then, by comparison in (14), � ∆ Γ w Γ � L 2 ( Σ ) ≤ C 5 � ( u , u Γ ) � H , whence � w Γ � L 2 ( 0, T ; H 2 ( Γ )) ≤ C 6 � ( u , u Γ ) � H . Standard elliptic estimates then yield � w � L 2 ( 0, T ; H 2 ( Ω )) ≤ C 7 � ( u , u Γ ) � H . Remark: 5. It cannot be expected that ( w , w Γ ) ∈ L ∞ ( Q ) × L ∞ ( Σ ) , in general. Optimal control ... · DIMO 2013 · Page 11 (26)

  16. An L ∞ bound for ( y , y Γ ) It holds y 0 ∈ L ∞ ( Ω ) , y 0 Γ ∈ L ∞ ( Γ ) , as well as (A5) 0 < ess inf y 0 ( x ) , ess sup y 0 ( x ) < 1, x ∈ Ω x ∈ Ω y 0 Γ ( x ) , y 0 Γ ( x ) < 1 . 0 < ess inf ess sup x ∈ Γ x ∈ Γ Optimal control ... · DIMO 2013 · Page 12 (26)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend