physical and artificial resistivity
play

Physical and Artificial Resistivity (in smoothed particle - PowerPoint PPT Presentation

Physical and Artificial Resistivity (in smoothed particle magnetohydrodynamics) James Wurster 1 st Phantom Users Workshop Monash University, 20 February 2018 Ideal magnetohydrodynamics d B = ( B r ) v B ( r v ) d t 2 Ideal MHD


  1. Physical and Artificial Resistivity (in smoothed particle magnetohydrodynamics) James Wurster 1 st Phantom Users Workshop Monash University, 20 February 2018

  2. Ideal magnetohydrodynamics d B = ( B · r ) v − B ( r · v ) d t 2

  3. Ideal MHD Ø Fully ionised plasma Ø Zero resistivity & infinite conductivity Ø Ions & electrons are tied to the magnetic field 3

  4. Ideal MHD 5000 z [AU] 0 -5000 -5000 0 5000 -5000 0 5000 x [AU] x [AU] Density (rendered) + Magnetic field lines 4 Ideal MHD. Left: Initial conditions. Right: at ρ max = 10 -9 g cm -3

  5. Ideal MHD: Artificial Resistivity d B = ( B · r ) v − B ( r · v ) d t + r × η art ( r × B ) where η art ≈ 1 2 α B v sig h 5

  6. Ideal MHD: Artificial Resistivity Ø Artificial resistivity (Tricco & Price, 2013) d B i + d B i � 1 h i X a v j a v i ab B j a r j a W ab ( h a ) � B i ab r j a � = a W ab ( h a ) � m b � d t Ω a ρ a d t � art b " # r j r j α B ab r j + α B ab r j d B i � a v sig ,a ˆ a W ab ( h a ) b v sig ,b ˆ a W ab ( h b ) ρ a X a � m b B i = � ab Ω b ρ 2 2 Ω a ρ 2 d t � a art b b v i v i a � v i = ab b B i B i a � B i = ab b q s ,a + v 2 = c 2 v sig ,a A ,a ✓ h a | r B a | ◆ α B = min , 1 a | B a | v 2 � � u ∂ B i tX X � a � u | r B a | ⌘ � � ∂ x j � � a i j 6 Ø Always applied if there is a gradient in the magnetic field (i.e. | ∇ B | > 0 )

  7. Ideal MHD: Artificial Resistivity Ø Artificial resistivity (Price, et al, submitted) d B i + d B i � 1 h i X a v j a v i ab B j a r j a W ab ( h a ) � B i ab r j a � = a W ab ( h a ) � m b � d t Ω a ρ a d t � art b " # r j r j ab r j ab r j d B i � ˆ a W ab ( h a ) + ˆ a W ab ( h b ) ρ a X a � m b α B v sig ,ab B i = � ab Ω b ρ 2 2 Ω a ρ 2 d t � a b art b B i B i a � B i = ab b = | v ab ⇥ ˆ r ab | v sig ,ab α B 1 ⌘ Ø Always applied for non-zero velocity Ø Less resistive that that from Tricco & Price (2013) 7

  8. Ideal MHD: Artificial Resistivity � density 0.5 Ø Price et. al. (2017) artificial resistivity t=0.5 t=1.0 � | v ab ⇥ ˆ = r ab | v sig ,ab α B 1 ⌘ 0.4 " � η v× r X � � Ø Tricco & Price (2013) � b q 0.3 s ,a + v 2 = c 2 v sig ,a A ,a ✓ h a | r B a | ◆ α B = min , 1 a | B a | η a + η b 0.2 v � � u Ø Tricco & Price (2013) with alternate averaging 0.1 8 Wurster, Bate, Price & Tricco (2017) η ab

  9. Ideal MHD: Artificial Resistivity density 0.5 t=0.5 t=1.0 0.0013 Price et. al. (2017) η v X r Tricco & Price (2013) η a + η b η ab Tricco & Price (2013) w/alternate averaging 0.0012 0.0011 0.4 E mag 0.001 η v× r 0.0009 0.0008 0.3 0.0007 0 0.2 0.4 0.6 0.8 1 Time η a + η b 0.2 0.1 9 Wurster, Bate, Price & Tricco (2017) η ab

  10. Motivation: Non-ideal MHD Orion Molecular Cloud HL Tau 10 Ionisation fraction ~ 10 -14 ~ 10 -12

  11. Non-ideal MHD Ø Partially ionised plasma B ρ Ø Non-zero resistivity & conductivity Ø Ions, electrons & neutrals behaviour is environment-dependent Ohmic Resistivity Hall Effect Ambipolar Diffusion 11 (ion-electron drift) (ion-neutral drift)

  12. Non-ideal MHD Ambipolar Diffusion (dissipative) Hall Effect log B (non-dissipative) Ohmic Resistivity (dissipative) log n 12 Adapted from Wardle (2007)

  13. Non-ideal MHD: Hall effect 13 Image credit: Tsukamoto et al (2017); see also: Braiding & Wardle (2012a,b)

  14. Ideal vs non-ideal MHD 5000 z [AU] 0 -5000 -5000 0 5000 -5000 0 5000 x [AU] x [AU] Density (rendered) + Magnetic field lines 14 During first core phase. Left: ideal MHD. Right: non-ideal MHD

  15. Ideal vs non-ideal MHD 10 z [AU] 0 -10 -10 0 10 -10 0 10 x [AU] x [AU] Density (rendered) + Magnetic field lines 15 During first core phase. Left: ideal MHD. Right: non-ideal MHD

  16. Non-ideal MHD log ρ n (g cm -3 ) ρ ρ -20 -15 -10 -5 0 η OR 25 10 5 First collapse First core Second Second core η HE > 0 Isothermal Adiabatic collapse Adiabatic η HE < 0 η AD η AD Duffin & Pudritz 2008 20 10 0 - η H η AD η H log η (cm 2 s -1 ) η (s) 15 10 -5 η Ω Machida et al. 2007 η Ω 10 10 -10 5 10 0 10 5 10 10 10 15 10 20 10 25 n H (cm -3 ) 0 5 10 15 20 log n n (cm -3 ) NICIL: Wurster (2016) Marchand+ (2016) 16 NICIL v1.2.3 is implemented in the current git version of Phantom

  17. Non-ideal MHD in Phantom: the NICIL library Ø Phantom includes the NICIL code (Wurster 2016) Ø Publically available at https://bitbucket.org/jameswurster/nicil Ø When compiling, set NONIDEALMHD=yes Ø Realistic defaults are set; these will self-consistently calculate the non-ideal coefficients Ø Fully parameterisable Ø Primary parameters are included in Phantom ’s .in file Ø All parameters are included at the top of nicil.F90 Ø Important parameters that can be modified Ø Included non-ideal MHD terms (default = ohmic + Hall + ambipolar) Ø Ionisation source (default = cosmic rays + thermal) Ø Cosmic ray ionisation rate (default = 10 -17 s -1 ) Ø Elements that can be thermally ionised (cannot be modified through .in file) Ø Grain properties (default = fixed size of 0.1µm; alternate is MRN, but is slow) Ø Important values are summarised in the dump files and the .ev file Ø Can optionally preselect non-ideal MHD coefficients (preferably for tests only) Ø All coefficients and required variables are calculated at runtime 17 17

  18. Implementation Ø Continuum equations d B = ( B · r ) v − B ( r · v ) d t + r × η art ( r × B ) + r × η OR ( r × B ) h i ( r × B ) × ˆ + r × η HE B nh i o ( r × B ) × ˆ × ˆ + r × η AD B B � Ø SPMHD equations + d B i d B i � � � 1 � a v j a � a − B i ab ∇ j v i ab B j a ∇ j a W ab ( h a ) = − m b a W ab ( h a ) � � � d t d t � a ρ a � non - ideal b ideal a b � � � d d � D a � � � � D b d B a � � + × ∇ a W ab ( h b ) , = − ρ a m b × ∇ a W ab ( h a ) � � b ρ 2 � a ρ 2 d t � b non - ideal a b J a × ˆ × ˆ D AD � � � D B a . D HE = − η HE J a × ˆ = η AD B a D OR B a , = − η OR J a , a a a 18 18 Wurster, Price & Ayliffe (2014)

  19. Implementation Density Loop: do i = 1, N do j = 1, N neigh Using j , calculate density of i Using j , calculate current density, J = r × B , of i enddo Using new density of i , calculate η nimhd enddo Force Loop: do i = 1, N Calculate J i × B i and ( J i × B i ) × B j do j = 1, N neigh Calculate J j × B j and ( J j × B j ) × B i Using j , calculate d B / d t non-ideal of i enddo Calculate non-ideal timesteps enddo Step Loop: do i = 1, N Updated magnetic field of i , using ideal, non-ideal and artificial terms 19 19 enddo

  20. Implementation Ø Timestepping: h = d t Courant C c 10 8 v sig ideal MHD non-ideal MHD 10 7 h 2 = d t nimhd C ni cpu time [cpu-hours] 10 6 | η | 10 5 10 4 Ø Phantom includes super-timestepping 10 3 (Alexiades, Amiez & Gremaud 1996) 10 2 Ø Right: cpu-hours required for the 10 6 particle 0 0.2 0.4 0.6 0.8 1 1.2 Simluation time [t ff ] models with µ 0 =5 in Wurster, Price & Bate (2016) Ø Non-ideal MHD is slightly slower for t < t ff , and much slower for t > t ff 20 20

  21. Conclusions Ø Artificial resistivity is required to stabilised magnetohydrodynamics equations Ø Ideal MHD is a poor approximation for modelling molecular clouds or protoplanetary discs Ø Non-ideal MHD requires an assumption of chemistry Ø The non-ideal MHD coefficients are not dependent on neighbours Ø The non-ideal MHD contribution to the magnetic field evolution is dependent on neighbours Ø Non-ideal MHD introduces a diffusion timestep ∝ h 2 , hence can be computationally expensive j.wurster@exeter.ac.uk http://www.astro.ex.ac.uk/people/wurster/ Presentation available at http://www.astro.ex.ac.uk/people/wurster/files/spmhd_resistivity.pdf 21 Nicil ’s git repository: https://bitbucket.org/jameswurster/nicil

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend