photo injector test facility at desy in zeuthen
play

Photo Injector Test facility at DESY in Zeuthen Acknowledgements to - PowerPoint PPT Presentation

Space-Charge Dominated Photoemission in the Photocathode RF Gun at PITZ Ye Chen and Mikhail Krasilnikov for the DESY-PITZ team The 5th Photocathode Physics for Photoinjectors (P3) Conference Santa Fe, New Mexico USA, October 15-17, 2018 Photo


  1. Space-Charge Dominated Photoemission in the Photocathode RF Gun at PITZ Ye Chen and Mikhail Krasilnikov for the DESY-PITZ team The 5th Photocathode Physics for Photoinjectors (P3) Conference Santa Fe, New Mexico USA, October 15-17, 2018 Photo Injector Test facility at DESY in Zeuthen Acknowledgements to D. H. Dowell, SLAC , C. Hernandez-Garcia, J-lab , R. Ganter, PSI , C. Hessler, CERN F. Brinker, M. Dohlus, K. Floettmann, W. Hillert, S. Lederer, S. Schreiber, DESY P. Michelato, L. Monaco, C. Pagani, D. Sertore, INFN, H. Chen, Y.-Ch. Du, W.-H. Huang, Ch.-X. Tang, Q.-L. Tian, L.-X. Yan, Tsinghua University A. Arnold, J. Teichert, R. Xiang, HZDR , H. De Gersem, E. Gjonaj, T. Weiland, TEMF for kind support and useful discussions on photocathode and photoemission Page 1 / 21

  2. Outline SCDPE: Space-Charge Dominated PhotoEmission  PITZ facility  Observation & characterization of SCDPE  Summary | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 2 / 21

  3. The PITZ Facility DESY Zeuthen Campus nearby Berlin PITZ http://www.desy.de/ | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 3 / 21

  4. Development, test and optimization of high brightness electron sources for SC linac driven FELs + applications The DESY-PITZ guns are in use at the European X-ray Free Electron RF Gun Laser (European-XFEL) and the  L-band (1.3 GHz) 1.6-cell copper cavity Free electron LASer in Hamburg  Ecath ≥ 60 MV/m  7 MeV/c e-beams (FLASH).  650 µs × 10 Hz  up to 45 kW av. RF power  Cs 2 Te PC (QE~5-15%)  up to 5 nC/bunch  Solenoids for emittance compensation  LLRF control for amp and phase stability <7MeV <25MeV UV PITZ Beam Line 3.0 Laser  Details: https://pitz.desy.de/ | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 4 / 21

  5. PITZ evolution 2002-2017  Photocathode and cathode laser Highlights of the Evolution:  Increasing the brightness (decreasing the emittance)  Improving gun stability and reliability  Extending beam diagnostics  Use high brightness beam capability | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 5 / 21

  6. Flexible Photocathode Laser pulse shaping system MBI Pulse Shaper Pulse Train Time Structure PITZ and EXFEL run bunch trains with up to 600 ( 2700 ) laser pulses Towards ultimately low emittance beams  3D ellipsoidal pulses (under development) Proof of principle demonstrated with IAP (JINR) system at PITZ (2016-2017) Comparison with simulated e - beam shapes (500pC): similarity in shape 20 Gaussian laser Ellipsoidal laser Flattop laser Comb 10 t (ps) 0 -10 @PST.Scr1 @ EMSY1 -20 -10 -5 0 5 10 x (mm) First Measurement  Details in J. Good et al., Proc. 38 th FEL Conf., WEP006 (2017) | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 6 / 21

  7. Photocathode in the gun: Cs 2 Te  Dark current measurement  Cs 2 Te produced at DESY and INFN-LASA Visual inspection  insertable QE: 5~15% @ 257 nm Faraday cup  Up to 5 nC/single bunch possible YAG Screen  Vacuum level in the gun: ~10 -9 mbar Dark current on Screen  For nominal operation (~6.5MW × 650µs) dark current < 100µA (for different guns) QE map ~0.8m Max. dark current vs. RF power during gun conditioning ~ 1 month  ≈ 92 ~ 4 months QE measurement I F : current [A], E: field [V/m] | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 7 / 21

  8. Operation: Working Points at European-XFEL, FLASH & PITZ 1nC  European XFEL, PITZ ~320pC  FLASH, PITZ  At European-XFEL and FLASH working points, the beam extraction at cathode strongly influenced by space- charge effects RF@~6.5MW × 650µs RF@~4.8MW × 600µs  Best emittance measured at 1.6 the working points, e.g. for Q [nC], emitted bunch charge 0.45 experiment experiment 1.4 1nC beam at European-XFEL 0.40 1.2 𝛇 𝐲,𝐨 ≈ 𝟏. 𝟖𝟑 𝐧𝐧 𝐧𝐬𝐛𝐞 0.35 1.0 0.30 𝛇 𝐳,𝐨 ≈ 𝟏. 𝟕𝟏 𝐧𝐧 𝐧𝐬𝐛𝐞 0.8 0.25 𝛇 𝐲,𝒐 𝛇 𝐳,𝐨 ≈ 0.66 mm mrad 0.20 0.6 0.15 0.4 0.10 0.2 0.05 0 0.00 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.02 0.04 0.06 0.08 Qbunch [nC] Laser pulse energy [µJ] Representative cathode drive laser intensity | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 8 / 21

  9. Operation: Discrepancies of Emitted Charge in simulation vs. measurement 1nC  European XFEL, PITZ ~320pC  FLASH, PITZ simulated Charge vs. Laser Energy σ rms = 0.4mm Uniform σ rms ≈ 0.3mm C+H σ rms =0.3mm RF@~6.5MW × 650µs RF@~4.8MW × 600µs Uniform 1.6 Q [nC], emitted bunch charge 0.45 experiment experiment 1.4 0.40 1.2 0.35 1.0 0.30 0.8 0.25 0.20 0.6 Core(C)+Halo(H) model: 0.15  fits for Gaussian temporal 0.4 0.10 distribution (see backup slide) 0.2 0.05  but not for flattop case 0 0.00 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.02 0.04 0.06 0.08 Qbunch [nC] Laser pulse energy [µJ] NIM A 871, 97-104 (2017) Representative cathode drive laser intensity | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 9 / 21

  10. Operation: Discrepancies of Emittance in simulation vs. measurement 1nC  European XFEL, PITZ ~320pC  FLASH, PITZ Emittance vs. Cathode Laser Spot Size 1nC RF@~6.5MW × 650µs RF@~4.8MW × 600µs 1.6 Q [nC], emitted bunch charge 0.45 experiment 250pC experiment 1.4 0.40 100pC 20pC 1.2 0.35 1.0 0.30 0.8 0.25  Lager discrepancies for stronger 0.20 0.6 space-charge dominated e-beams 0.15  Problems may (partially) 0.4 0.10 originate from photocathode 0.2 0.05 already? 0 0.00 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.02 0.04 0.06 0.08 PRST-AB 15, 100701 (2012) Qbunch [nC] Laser pulse energy [µJ] Representative cathode drive laser intensity | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 10 / 21

  11. Modeling: Some Treatments in simulations Treatment 1  Generating more Treatment 2  Bridging beam dynamics in vacuum with Treatment 3  modeling field(RF + space- charge) effects during emission through "realistic" photoemission distribution simplified effective cathode QE well-known Schottky effect according to cathode laser (and QE map) for metals: for semiconductors: 𝚾 𝐭𝐝𝐢𝐩𝐮𝐮𝐥𝐳 𝒔 ⊥ , 𝒖 (1 − 𝑆) 𝛽(ℏ𝜕 − Φ 𝑓𝑔𝑔 ) 2 Temporal laser profile QE 𝜂 = QE∗ = 8Φ 𝑓𝑔𝑔 (𝐹 𝐺 + Φ 𝑓𝑔𝑔 ) 𝐹 𝑏 ℏ𝜕 − Φ 𝑓𝑔𝑔 ) 2 2(𝑞 0 + 1)(1 + 𝒇 𝑭 𝐒𝐆 𝒔 ⊥ , 𝒖, 𝒜 = 𝟏 ± 𝑭 𝐓𝐪𝐝𝐢 𝒔 ⊥ , 𝒖, 𝒜 = 𝟏 intensity y = 𝒇 Φ eff = 𝐹 𝑕 +𝐹 𝑏 ± Φ schottky + ⋯ Φ eff = Φ 0 ±Φ schottky + ⋯ x 𝟓𝝆𝜻 𝟏 𝐹 𝑏 : electron affinity QE Φ eff : effective cathode work function Map, f 2 Φ 0 : intrinsic work function 𝑞 0 : characteristic parameter 𝐑𝐅 𝒔 ⊥ , 𝒖, 𝐴 = 𝟏 during emission, Laser Φ schottky : Schottky term 𝑆 : reflection coefficient determined according to the RF field & Spot Map, f 1 𝐹 𝑕 : band gap ℏ𝜕 : photon energy the self-field of the beam at extraction, 𝐹 𝐺 : Fermi energy time but, the latter is NOT prior known. ∗ 𝛽 : characteristic parameter (f 1 f 2 ) (r, t) Convolution 𝜼 K. Jensen et al., J. Appl. Phys104, 044907 (2008) *D. Dowell et al., PRST-AB 12 074201 (2009) | The 5 th Photocathode Physics for Photoinjectors (P3) | Santa Fe • NM USA | Dr. Ye Chen | 15-17.10.2018 Page 11 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend