performance guarantees for random fourier features
play

Performance Guarantees for Random Fourier Features Limitations and - PowerPoint PPT Presentation

Performance Guarantees for Random Fourier Features Limitations and Merits Zolt an Szab o Joint work with Bharath K. Sriperumbudur (PSU) ML@SITraN, University of Sheffield June 25, 2015 Zolt an Szab o Random Fourier Features


  1. Performance Guarantees for Random Fourier Features – Limitations and Merits Zolt´ an Szab´ o Joint work with Bharath K. Sriperumbudur (PSU) ML@SITraN, University of Sheffield June 25, 2015 Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  2. Context Given: � � � � R d e i ω T ( x − y ) d Λ( ω ) = ω T ( x − y ) k ( x , y ) = R d cos d Λ( ω ) . i . i . d . ˆ k ( x , y ): Monte-Carlo estimator of k ( x , y ) using ( ω j ) m ∼ Λ j =1 [Rahimi and Recht, 2007]. Motivation: Primal form – fast linear solvers. Kernel function approximation: out-of-sample extension. Online applications. Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  3. Performance measures Uniform ( r = ∞ ): � � � � � k − ˆ � k ( x , y ) − ˆ � � � � k S := sup k ( x , y ) � . � x , y ∈ S L r (1 ≤ r < ∞ ): � 1 �� � r k ( x , y ) | r d x d y � k − ˆ | k ( x , y ) − ˆ k � L r ( S ) := . S S Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  4. Approximation of kernel derivatives One could also consider ∂ p , q k . Motivation [Zhou, 2008, Shi et al., 2010, Rosasco et al., 2010, Rosasco et al., 2013, Ying et al., 2012, Sriperumbudur et al., 2014]: semi-supervised learning with gradient information, nonlinear variable selection, fitting of infD exp. family distributions. Many of the presented results hold for derivatives ([ p ; q ] � = 0 ). Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  5. Goal Large deviation inequalities Λ m �� � � � k − ˆ � � k S ≤ ǫ ≥ f 1 ( ǫ, d , m , | S | ) , � Λ m �� � � � k − ˆ � � k L r ≤ ǫ ≥ f 2 ( ǫ, d , m , | S | ) . � Scaling of | S | and m ensuring a.s. convergence? Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  6. Existing results on the approximation quality Notations: X n = O p ( r n ) ( O a . s . ( r n )) denotes X n r n boundedness in probability (almost surely). [Rahimi and Recht, 2007]: � � � � � log m � ˆ � � k ( x , y ) − k ( x , y ) S = O p | S | . � m [Sutherland and Schneider, 2015]: better constants. Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  7. Contents Uniform guarantee (empirical process theory), Two L r guarantees (uniform consequence, direct). Kernel derivatives. Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  8. High-level proof Empirical process form: 1 � � � k − ˆ � � k S = sup | Λ g − Λ m g | = � Λ − Λ m � G . � g ∈G � Λ − Λ m � G concentrates by its bounded difference property: 2 1 √ m . � Λ − Λ m � G � E ω 1: m � Λ − Λ m � G + G is a uniformly bounded, separable Carath´ eodory family ⇒ 3 E ω 1: m � Λ − Λ m � G � E ω 1: m R ( G , ω 1: m ) . Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  9. High-level proof Using Dudley’s entropy integral: 4 � |G| L 2(Λ m ) � 1 log N ( G , L 2 (Λ m ) , r ) d r . R ( G , ω 1: m ) � √ m 0 G is smoothly parameterized by a compact set ⇒ 5 � � C ( ω 1: m ) � � log N ( G , L 2 (Λ m ) , r ) ≤ log + 1 ⇒ r 1 √ m . E ω 1: m R ( G , ω 1: m ) � Putting together: 6 �� � � � 1 1 log | S | � k − ˆ � � k S � √ m + √ m = O . � m Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  10. Step-1: empirical process form � � � m g ( ω ) d Λ m ( ω ) = 1 Notation: Λ g = g ( ω ) d Λ( ω ), Λ m g = j =1 g ( ω j ). m Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  11. Step-1: empirical process form � � � m g ( ω ) d Λ m ( ω ) = 1 Notation: Λ g = g ( ω ) d Λ( ω ), Λ m g = j =1 g ( ω j ). m Reformulation of the objective: � � � k ( x , y ) − ˆ � � sup k ( x , y ) � = sup | Λ g − Λ m g | =: � Λ − Λ m � G , x , y ∈ S g ∈G where G = { g z : z ∈ S ∆ } , S ∆ = S − S = { x − y : x , y ∈ S } , � � ω T z g z : ω �→ cos . Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  12. Step-2: bounded difference property of � Λ − Λ m � G McDiarmid inequality : Let ω 1 , . . . , ω m ∈ D be independent r.v.-s, and f : D m → R satisfy the bounded diff. property ( ∀ r ): � � � f ( u 1 , . . . , u m ) − f ( u 1 , . . . , u r − 1 , u ′ � ≤ c r . sup r , u r +1 , . . . , u m ) u 1 ,..., u m , u ′ r ∈ D Then for ∀ β > 0 2 β 2 − � m r =1 c 2 r . P ( f ( ω 1 , . . . , ω m ) − E [ f ( ω 1 , . . . , ω m )] ≥ β ) ≤ e Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  13. Step-2: bounded difference property of � Λ − Λ m � G Our choice: f ( ω 1 , . . . , ω m ) := � Λ − Λ m � G . | f ( ω 1 , . . . , ω r − 1 , ω r , ω r +1 , . . . , ω m ) − f ( ω 1 , . . . , ω r − 1 , ω ′ r , ω r +1 , . . . , ω m ) | = � � � � � � Λ g − 1 � � Λ g − 1 � g ( ω j ) + 1 �� � � � � � g ( ω r ) − g ( ω ′ � � � � � − sup = sup g ( ω j ) r ) � � � m m m � � g ∈G g ∈G � j =1 j =1 � Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  14. Step-2: bounded difference property of � Λ − Λ m � G Our choice: f ( ω 1 , . . . , ω m ) := � Λ − Λ m � G . | f ( ω 1 , . . . , ω r − 1 , ω r , ω r +1 , . . . , ω m ) − f ( ω 1 , . . . , ω r − 1 , ω ′ r , ω r +1 , . . . , ω m ) | = � � � � � � Λ g − 1 � � Λ g − 1 � g ( ω j ) + 1 �� � � � � � g ( ω r ) − g ( ω ′ � � � � � − sup = sup g ( ω j ) r ) � � � m m m � � g ∈G g ∈G � j =1 j =1 � ( ∗ ) ≤ 1 � � � g ( ω r ) − g ( ω ′ m sup r ) � g ∈G Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  15. Step-2: bounded difference property of � Λ − Λ m � G Our choice: f ( ω 1 , . . . , ω m ) := � Λ − Λ m � G . | f ( ω 1 , . . . , ω r − 1 , ω r , ω r +1 , . . . , ω m ) − f ( ω 1 , . . . , ω r − 1 , ω ′ r , ω r +1 , . . . , ω m ) | = � � � � � � Λ g − 1 � � Λ g − 1 � g ( ω j ) + 1 �� � � � � � g ( ω r ) − g ( ω ′ � � � � � − sup = sup g ( ω j ) r ) � � � m m m � � g ∈G g ∈G � j =1 j =1 � ( ∗ ) ≤ 1 � ≤ 1 � � � � � �� � g ( ω r ) − g ( ω ′ � g ( ω ′ | g ( ω r ) | + m sup r ) m sup r ) g ∈G g ∈G Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  16. Step-2: bounded difference property of � Λ − Λ m � G Our choice: f ( ω 1 , . . . , ω m ) := � Λ − Λ m � G . | f ( ω 1 , . . . , ω r − 1 , ω r , ω r +1 , . . . , ω m ) − f ( ω 1 , . . . , ω r − 1 , ω ′ r , ω r +1 , . . . , ω m ) | = � � � � � � Λ g − 1 � � Λ g − 1 � g ( ω j ) + 1 �� � � � � � g ( ω r ) − g ( ω ′ � � � � � − sup = sup g ( ω j ) r ) � � � m m m � � g ∈G g ∈G � j =1 j =1 � ( ∗ ) ≤ 1 � ≤ 1 � � � � � �� � g ( ω r ) − g ( ω ′ � g ( ω ′ | g ( ω r ) | + m sup r ) m sup r ) g ∈G g ∈G � � ≤ 1 � � � g ( ω ′ sup | g ( ω r ) | + sup r ) � m g ∈G g ∈G Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  17. Step-2: bounded difference property of � Λ − Λ m � G Our choice: f ( ω 1 , . . . , ω m ) := � Λ − Λ m � G . | f ( ω 1 , . . . , ω r − 1 , ω r , ω r +1 , . . . , ω m ) − f ( ω 1 , . . . , ω r − 1 , ω ′ r , ω r +1 , . . . , ω m ) | = � � � � � � Λ g − 1 � � � Λ g − 1 g ( ω j ) + 1 �� � � � � � g ( ω r ) − g ( ω ′ � � � � � − sup = sup g ( ω j ) r ) � � � m m m � � g ∈G g ∈G � j =1 j =1 � ( ∗ ) ≤ 1 � ≤ 1 � � � � �� � � g ( ω r ) − g ( ω ′ � g ( ω ′ | g ( ω r ) | + m sup r ) m sup r ) g ∈G g ∈G � � ≤ 1 ≤ 1 + 1 = 2 � � � g ( ω ′ sup | g ( ω r ) | + sup r ) m . � m m g ∈G g ∈G Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  18. Step-2: (*) = reverse triangle inequality with sup Lemma: G : set of functions, a , b : G → R maps; then � � � � � � � sup | a ( g ) | − sup | a ( g ) + b ( g ) | � � g ∈G g ∈G �

  19. Step-2: (*) = reverse triangle inequality with sup Lemma: G : set of functions, a , b : G → R maps; then � � � � � � � sup | a ( g ) | − sup | a ( g ) + b ( g ) | � ≤ sup | b ( g ) | . � � g ∈G g ∈G g ∈G Zolt´ an Szab´ o Random Fourier Features – Limitations and Merits

  20. Step-2: (*) = reverse triangle inequality with sup Lemma: G : set of functions, a , b : G → R maps; then � � � � � � � sup | a ( g ) | − sup | a ( g ) + b ( g ) | � ≤ sup | b ( g ) | . � � g ∈G g ∈G g ∈G Proof: combine sup g ∈G | a ( g ) + b ( g ) | ≤ sup ( | a ( g ) | + | b ( g ) | ) ≤ sup | a ( g ) | + sup | b ( g ) | , g ∈G g ∈G g ∈G

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend