performance analysis and optimal filter design for sigma
play

Performance Analysis and Optimal Filter Design for Sigma-Delta - PowerPoint PPT Presentation

Performance Analysis and Optimal Filter Design for Sigma-Delta Modulation via Duality with DPCM Or Ordentlich Joint work with Uri Erez ISIT 2015, Hong Kong June 15, 2015 Ordentlich and Erez Sigma-Delta/DPCM Duality Oversampled Data


  1. Performance Analysis and Optimal Filter Design for Sigma-Delta Modulation via Duality with DPCM Or Ordentlich Joint work with Uri Erez ISIT 2015, Hong Kong June 15, 2015 Ordentlich and Erez Sigma-Delta/DPCM Duality

  2. Oversampled Data Conversion X ( t ) is a stationary Gaussian process with S X ( f ) = 0, ∀| f | > f max Sampling X ( t ) at Nyquist’s rate gives the discrete process X n Sampling X ( t ) at L x Nyquist’s rate gives the discrete process X L n Ordentlich and Erez Sigma-Delta/DPCM Duality

  3. Oversampled Data Conversion X ( t ) is a stationary Gaussian process with S X ( f ) = 0, ∀| f | > f max Sampling X ( t ) at Nyquist’s rate gives the discrete process X n Sampling X ( t ) at L x Nyquist’s rate gives the discrete process X L n Rate-Distortion 101 The number of bits per second for describing both processes with distortion D is equal Normalizing by the number of samples per second gives R X L ( D ) = 1 L · R X ( D ) Ordentlich and Erez Sigma-Delta/DPCM Duality

  4. Oversampled Data Conversion X ( t ) is a stationary Gaussian process with S X ( f ) = 0, ∀| f | > f max Sampling X ( t ) at Nyquist’s rate gives the discrete process X n Sampling X ( t ) at L x Nyquist’s rate gives the discrete process X L n Rate-Distortion 101 The number of bits per second for describing both processes with distortion D is equal Normalizing by the number of samples per second gives R X L ( D ) = 1 L · R X ( D ) In data conversion fast low-resolution ADCs are often preferable over slow high-resolution ADCs Ordentlich and Erez Sigma-Delta/DPCM Duality

  5. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Ordentlich and Erez Sigma-Delta/DPCM Duality

  6. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Oversampled Data Conversion H ( ω ) 1 X L ˆ X ( t ) Sampler n Q ( · ) X n ω − π π L L T s = 1 / 2 Lf max Ordentlich and Erez Sigma-Delta/DPCM Duality

  7. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Oversampled Data Conversion H ( ω ) 1 X L ˆ X ( t ) Sampler n Q ( · ) X n ω − π π L L T s = 1 / 2 Lf max Oversampling reduces the MSE distortion by 1 / L ⇒ Not good enough, want exponential decay with L Ordentlich and Erez Sigma-Delta/DPCM Duality

  8. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Σ∆ Modulation H ( ω ) ˆ 1 U n U n ˆ X L X L Q ( · ) Σ n n − − π π ω L L − C ( Z ) Σ N n Ordentlich and Erez Sigma-Delta/DPCM Duality

  9. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Σ∆ Modulation H ( ω ) ˆ 1 U n U n ˆ X L X L Q ( · ) Σ n n − − π π ω L L − C ( Z ) Σ N n Our goal is to analyze the performance of Σ∆: Quantization rate vs. MSE distortion Ordentlich and Erez Sigma-Delta/DPCM Duality

  10. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Σ∆ Modulation H ( ω ) ˆ 1 U n U n ˆ X L X L Q ( · ) Σ n n − − π π ω L L − C ( Z ) Σ N n We will model the Σ∆ modulator by a test-channel Ordentlich and Erez Sigma-Delta/DPCM Duality

  11. Σ∆ Modulation Standard Data Conversion X n ˆ X ( t ) Sampler Q ( · ) X n T s = 1 / 2 f max Σ∆ Modulation 0 , σ 2 � � N n ∼ N Σ∆ H ( ω ) 1 U n U n + N n ˆ X L X L Σ n n − − π π ω L L − C ( Z ) Σ N n Will study the tradeoff between I ( U n ; U n + N n ) and the MSE distortion E ( ˆ n ) 2 X L n − X L Ordentlich and Erez Sigma-Delta/DPCM Duality

  12. Relevance of Gaussian Test Channel Uniform Scalar Quantization ˆ X n Q ( · ) X n Q ( x ): · · · 1 2 3 2 R x √ √ 12 σ 2 12 σ 2 Ordentlich and Erez Sigma-Delta/DPCM Duality

  13. Relevance of Gaussian Test Channel Uniform Scalar Quantization ˆ X n Q ( · ) X n Q ( x ): · · · 1 2 3 2 R x OVERLOAD OVERLOAD √ √ 12 σ 2 12 σ 2 No Overload Region Ordentlich and Erez Sigma-Delta/DPCM Duality

  14. Relevance of Gaussian Test Channel Uniform Scalar Quantization ˆ X n Q ( · ) X n Q ( x ): · · · 1 2 3 2 R x OVERLOAD OVERLOAD √ √ 12 σ 2 12 σ 2 No Overload Region High-resolution/dithered quantization assumption + no overload √ √ � � ˆ 12 σ 2 12 σ 2 N n ∼ Uniform − X n = X n + N n ; , , X n = N n 2 2 | Ordentlich and Erez Sigma-Delta/DPCM Duality

  15. Relevance of Gaussian Test Channel Uniform Scalar Quantization ˆ X n Q ( · ) X n Q ( x ): · · · 1 2 3 2 R x OVERLOAD OVERLOAD √ √ 12 σ 2 12 σ 2 No Overload Region | X n + N n | < 2 R √ 12 σ 2 2 High-resolution/dithered quantization assumption + no overload √ √ � � ˆ 12 σ 2 12 σ 2 N n ∼ Uniform − X n = X n + N n ; , , X n = N n 2 2 | Ordentlich and Erez Sigma-Delta/DPCM Duality

  16. Relevance of Gaussian Test Channel Uniform Scalar Quantization � 2 � ˆ ˆ = σ 2 X n X n − X n X n E √ √ � � 12 σ 2 12 σ 2 N n ∼ Uniform − , 2 2 Ordentlich and Erez Sigma-Delta/DPCM Duality

  17. Relevance of Gaussian Test Channel Uniform Scalar Quantization � 2 � ˆ ˆ = σ 2 X n X n − X n X n E √ √ � � 12 σ 2 12 σ 2 N n ∼ Uniform − , 2 2 Recalling X n ∼ N (0 , σ 2 X ), it is easy to show | X n + N n | > 2 R √ σ 2 � � �� � � � � 12 σ 2 R − 1 − 3 X 2 2 log 1+ σ 2 P ol � Pr ≤ 2exp 22 2 Ordentlich and Erez Sigma-Delta/DPCM Duality

  18. Relevance of Gaussian Test Channel Uniform Scalar Quantization � 2 � ˆ ˆ = σ 2 X n X n − X n X n E N n ∼ N (0 , σ 2 ) Recalling X n ∼ N (0 , σ 2 X ), it is easy to show � � − 3 22 2( R − I ( X n ; X n + N n )) P ol ≤ 2exp Ordentlich and Erez Sigma-Delta/DPCM Duality

  19. Relevance of Gaussian Test Channel Uniform Scalar Quantization � 2 � ˆ ˆ = σ 2 X n X n − X n X n E N n ∼ N (0 , σ 2 ) Recalling X n ∼ N (0 , σ 2 X ), it is easy to show � � − 3 22 2( R − I ( X n ; X n + N n )) P ol ≤ 2exp Conclusion: the quantizer can be replaced by an AWGN test-channel Ordentlich and Erez Sigma-Delta/DPCM Duality

  20. Back to the Σ∆ Test Channel � 0 , σ 2 � N n ∼ N Σ∆ H ( ω ) 1 U n U n + N n ˆ X Σ∆ X Σ∆ Σ n − n − π π ω L L − C ( Z ) Σ N n Ordentlich and Erez Sigma-Delta/DPCM Duality

  21. Back to the Σ∆ Test Channel � 0 , σ 2 � N n ∼ N Σ∆ H ( ω ) 1 U n U n + N n ˆ X Σ∆ X Σ∆ Σ n − n − π π ω L L − C ( Z ) Σ N n U n = X Σ∆ − c n ∗ N n n U n + N n = X Σ∆ + ( δ n − c n ) ∗ N n n � 1 + E ( U n ) 2 � I ( U n ; U n + N n ) = 1 2 log σ 2 Σ∆ ˆ X n = X Σ∆ + h n ∗ ( δ n − c n ) ∗ N n n − ˆ X Σ∆ X Σ∆ = h n ∗ ( δ n − c n ) ∗ N n n n Ordentlich and Erez Sigma-Delta/DPCM Duality

  22. Back to the Σ∆ Test Channel 0 , σ 2 � � N n ∼ N Σ∆ H ( ω ) 1 U n U n + N n X Σ∆ ˆ X Σ∆ Σ n − n ω − π π L L − C ( Z ) Σ N n Proposition - Σ∆ Rate-Distortion Tradeoff For any stationary Gaussian process with variance σ 2 X sampled L times above Nyquist’s rate � π | C ( ω ) | 2 d ω + σ 2 I ( U n ; U n + N n ) = 1 � 1 + 1 � X 2 log , σ 2 2 π − π Σ∆ � π/ L Σ∆ · 1 D = σ 2 | 1 − C ( ω ) | 2 d ω 2 π − π/ L Ordentlich and Erez Sigma-Delta/DPCM Duality

  23. Back to the Σ∆ Test Channel � 0 , σ 2 � N n ∼ N Σ∆ H ( ω ) 1 U n U n + N n ˆ X Σ∆ X Σ∆ Σ n − n − π π ω L L − C ( Z ) Σ N n Not clear how to choose C ( Z ) Ordentlich and Erez Sigma-Delta/DPCM Duality

  24. Detour: DPCM � 0 , σ 2 � N n ∼ N DPCM H ( ω ) 1 U n U n + N n Σ V n X DPCM ˆ X DPCM Σ n − n + − π π ω L L C ( Z ) Ordentlich and Erez Sigma-Delta/DPCM Duality

  25. Detour: DPCM � 0 , σ 2 � N n ∼ N DPCM H ( ω ) 1 U n U n + N n Σ V n X DPCM ˆ X DPCM Σ n − n + − π π ω L L C ( Z ) Popular for compression of stationary processes (rather than A/D) Design depends on 2 nd -order statistics of { X DPCM } (in contrast to Σ∆) n Rate-Distortion tradeoff of DPCM is well understood (McDonald66, JN84, ZKE08) Ordentlich and Erez Sigma-Delta/DPCM Duality

  26. Detour: DPCM � 0 , σ 2 � N n ∼ N DPCM H ( ω ) 1 U n U n + N n Σ V n X DPCM ˆ X DPCM Σ n n − + − π π ω L L C ( Z ) DPCM Rate-Distortion Tradeoff for Flat Low-Pass Process Let { X DPCM } be a stationary Gaussian process with PSD n � L σ 2 for | ω | ≤ π/ L S DPCM X ( ω ) = for π/ L < | ω | < π , X 0 then D = σ 2 DPCM / L and � π � π/ L | C ( ω ) | 2 d ω + L σ 2 � � I ( U n ; U n + N n ) = 1 1+ 1 1 | 1 − C ( ω ) | 2 d ω X 2 log σ 2 2 π 2 π − π DPCM − π/ L Ordentlich and Erez Sigma-Delta/DPCM Duality

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend