pat t erned magnet ic st ruct ures f rom f undament al
play

Pat t erned magnet ic st ruct ures f rom f undament al micromagnet - PowerPoint PPT Presentation

Pat t erned magnet ic st ruct ures f rom f undament al micromagnet ism t o micron-scale applicat ions Olivier Fruchart - Laboratoire Louis Nel, Grenoble, France. Olivier Fruchart - Laboratoire Louis Nel, Grenoble, France. Slides on- line:


  1. Pat t erned magnet ic st ruct ures f rom f undament al micromagnet ism t o micron-scale applicat ions Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  2. Micromagnet ism > Table of cont ent Micromagnetism (fundamental) The background Magnetostatics The fundamental issues of micromagnetism Coherent reversal Domains and walls Characteristic length scales Multidomains : theory ( ) and real life( ) Applications for ‘large’ microstructures Magnetic recording heads (general) Magnetic recording heads (alditech : tapes) Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.2 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.2 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  3. Micromagnet ism > ref erences Micromagnetism = Continous media theory describing the magnetization distribution inside samples ! Classical theory ! Atomic structure of matter is ignored ! Analytical as well as numerical approach Magnet ic domains, A. Hubert and R. Schäf er, Springer Verlag, 1998. Practical although rigourous approach to micromagnetism. More imaging. An int roduct ion t o t he t heory of f erromagnet ism, A. Aharoni, Clarendon Press, 2001. A more mathematical approach. More historical (math.) concepts. Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.3 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.3 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  4. Micromagnet ism > exchange Exchange energy Ferromagnetic order comes from quantum mechanics Pauli exclusion principle + Spins do not ignore each other Electrostatic forces Exchange energy = − e J S . S For ferromagnetic substances : parallel alignement is favored 1 2 ex 1 , 2 ! Magnetic moment, M(T), etc. ( ) ( ) ≈ ∇ = ∂ ∂ e A θ 2 A θ / x 2 for 1D situation ex Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.4 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.4 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  5. Micromagnet ism > magnet ocryst alline anisot ropy Magnetocrystalline anisotropy energy Electronic cloud Atom nucleus (crystal structure) Spin-orbit coupling ! the energy of both spin and orbital moment depends on orientation Series development on an angular basis: Anisotropy energy Normalized magnetization components = + + e K m 2 K m 4 ... Uniaxial z z Alignement of magnetization mc 2 4 = + + + is favored along e K m 2 m 2 m 2 m 2 m 2 m 2 ( ) ... x y y z z x mc 4 given axes of the crystal Cubic … (Derived f rom slide of A. Thiaville – CNRS/ Or say) Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.5 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.5 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  6. Micromagnet ism > Zeeman energy Zeeman energy External magnetic field (applied by magnets, earth, etc.) Analogy : a compass needle in the earth’s magnetic field Zeeman energy = − Alignement of magnetization e µ M . H S is favored parallel to the external field Z 0 Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.6 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.6 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  7. Micromagnet ism > dipolar energy Dipolar energy Magnetic moments (spin or orbital) are assimilated to microscopic currents " they create long-range dipolar fields H " What is the effect of these fields ? The dipolar energy is the Zeeman energy of the sample in the dipolar field H d created by all its spins Mutual energy should be counted only once ! = − = − E µ µ µ . H µ . H 2 1 1,2 0 0 1 2 2 ( ) 1 = − + µ µ H µ H . . 2 1 0 1 2 2 1 Local dipolar energy 1 = − e µ M . H S d d 0 2 (per unit volume) Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.7 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.7 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  8. Micromagnet ism > dipolar energy Cone of alignment Mutual energy of two magnetic dipoles :   µ 3 = − E 0 µ . µ ( µ . r ).( µ . r )   1,2   1 2 1 2 π r 3 r 2 4 Let us assume two magnetic dipoles 2 with vertical direction, either ‘up’ or ‘down’ : θ [ ] µ θ = µ µ − θ θ = 2 0 cos 2 E ( ) 1 3 cos ( ) 1 / 3 π 1 1,2 1 2 C 3 4 r < ≈ ° θ θ Parallel alignment is favored for 54 . 74 C > ≈ ° θ θ Antiparallel alignment is favored for 54 . 74 C 1/ r 3 decay: the dipolar interaction is long ranged Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.8 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.8 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  9. Micromagnet ism > dipolar energy Cone of alignment How to use the ‘cone of alignment’ to predict the effect of dipolar fields ? Situation 1 : M perpendicular Most of the spins are in the antiparallel cone " not favorable Situation 2 : M parallel Most of the spins are in the parallel cone " favorable The favored magnetization direction is along the long axis of the sample Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.9 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.9 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  10. Micromagnet ism > magnet ost at ics laws Electrostatics / Magnetostatics parallel Electrostatics ‘Electric charge’ Maxwell’s equations : ρ P d P ρ 3 ( ) u ∫∫∫ PM = = M div E E ( ) ε πε PM 2 4 Magnetostatics 0 0 = div B 0 P d P 3 div [ M ( )] u ∫∫∫ PM = − M = − H ( ) H M div div π PM 2 4 B = + H M µ ‘Magnetic charge’ 0 For a finite size sample : after integration over the entire space, a new term arises due to the magnetization discontinuity at the sample’s surface: ‘Volume charges’ ‘Surface charges’ ∂ ∂ ∂ M M P d P P M 3 M u M n div [ ( )] ( ). ∫∫∫ ∫∫ PM = + y + z = − + x with : M dS div M H ( ) ∂ ∂ ∂ d x y z π PM π PM 2 2 4 4 sample' s sample Local dipolar energy surface 1 The dipolar field coming from a sample = − e µ M . H S d can be calculated from these ‘magnetic charges’ d 0 2 Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.10 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.10 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  11. Micromagnet ism > st ray- and demagnet izing f ields Example - + - + Let us assume a uniformly magnetized prism body : - M + - + - + Note: a free dipole aligns itself parallel to the Magnetic charges stray field H of the magnet Stray field = - + Field created - + - S N + outside the sample - + - + Long-range : dipole-like Demagnetizing field = - + - + N S - Field created + H - d + - inside the sample + (acting from the sample on itself) (I mages f rom A. Thiaville – CNRS/ Or say) Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.11 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.11 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  12. Micromagnet ism > demagnet izing f ields Demagnetizing fields How to use the ‘surface charges’ model to predict the effect of dipolar fields ? Situation 1 : M perpendicular + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - Many surface charges : high dipolar fields " not favorable Situation 2 : M parallel - + - - + + - + Few surface charges : low dipolar fields " favorable The favored magnetization direction is along the long axis of the sample « Shape anisotropy » Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.12 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.12 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

  13. Micromagnet ism > shape ef f ect Hypothesis : Uniformly magnetized body with arbitrary shape See validity for real samples, later in the course It can be shown that : ( ) 1 = + + e µ N M 2 N M 2 N M 2 x x y y z z d 0 2 + + = ≥ M N N N N 1 , 0 With : x y z i (see analogy with This is the ‘Shape anisotropy energy’ magnetocrystalline…) Notes and consequences : 1 1 ∫∫∫ = = e max e d τ µ M 2 max . d d 0 S V 2 sample Even if M is assumed to be The ‘shape’ energy is uniaxial uniform in the system, H d is in general not uniform, except for special shapes. N i is higher along short sample directions ! see examples = + K K K Effective anisotropy energy: eff mc d Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.13 ] Olivier Fruchart - LLN-CNRS. [ 09/10/2001 / p.13 ] Slides on- line: http:/ / ln-w 3 .polycnrs-gre.fr/ them es/ couches/ ext/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend