passive immunotherapy targeting tumor cells cd38 in
play

PASSIVE IMMUNOTHERAPY: TARGETING TUMOR CELLS CD38 in myeloma and - PowerPoint PPT Presentation

PASSIVE IMMUNOTHERAPY: TARGETING TUMOR CELLS CD38 in myeloma and beyond: groundwork & outlook Alessandra Larocca, MD, PhD Divisione di Ematologia 1 AOU Citt della Salute e della Scienza University of Torino, Italy, EU Disclosures: A


  1. PASSIVE IMMUNOTHERAPY: TARGETING TUMOR CELLS CD38 in myeloma and beyond: groundwork & outlook Alessandra Larocca, MD, PhD Divisione di Ematologia 1 AOU Città della Salute e della Scienza University of Torino, Italy, EU

  2. Disclosures: A Larocca Research Support/P.I. Employee Consultant Major Stockholder Speakers Bureau Honoraria Janssen-Cilag, Celgene, BMS, Amgen Scientific Advisory Board BMS This presentation may contain unregistered products or indications of investigational drugs, please check the drug compendium or consult the company

  3. CD38 as a Therapeutic Target Flow cytometry of CD38 Structure of CD38 on myeloma cells CD38 - CD38 is a type II transmembrane glycoprotein, strongly expressed by myeloma cells - Role in cell signaling, cell adhesion, signal transduction, calcium homeostasis, production of adenosine (immunosuppressive effect) CD38 as a potential therapeutic antibody target for treatment of multiple myeloma (MM) Wikimedia Commons / Emw, CC-BY-SA-3.0: https://commons.wikimedia.org/wiki/File:Protein_CD38_PDB_1yh Lin P, et al. Am J Clin Pathol 2004;121;482.

  4. Rationale for moAbs in MM

  5. The impact of rituximab in diffuse large B-cell lymphoma Overall survival by treatment era Post-rituximab Pre-rituximab P < 0.0001 Can we find a monoclonal antibody that will change the course of myeloma in a similar way? Sehn ¡et ¡al. ¡J ¡Clin ¡Oncol ¡2005;23:5027-­‑5033 ¡

  6. The bone marrow microenvironment influences tumor growth in MM In MM, the balance between tumor growth and tumor suppression is shaped by complex interaction between immune, non-immune, and malignant MM cells within the bone marrow microenvironment Tumor supporting Tumor Factors supporting tumor growth suppressive Angiogenesis Immunosuppression • IL-6 released by BMSCs, tumor-associated macrophages, and osteoclasts promotes MM cell proliferation, survival, and drug resistance • VEGF released by BMSCs and TAMs stimulates angiogenesis Factors suppressing tumor growth • CD8+ T cells and NK cells secrete IFN- ɣ and kill MM cells directly • Th1 CD4+ T cells may inhibit tumor growth Factors suppressing anti-MM immune cell activity • MDSCs and Tregs secrete immunosuppressive factors such as IL-10 and TGF- β Bone lysis • Th2 CD4+ T cells may promote tumor growth BMSCs, bone marrow stromal cells; DC, dendritic cell; Grz, granzyme; IFN, interferon; IL, interleukin; SC, myeloid derived suppressor cell; MM, multiple myeloma; NK, natural killer; pfp, perforin; TAM, tumor ssociated macrophage; TGF, transforming growth factor; Th, T helper; TNF, tumor necrosis factor; Treg, Guillerey C et al. Cell Mol Life Sci. 2016;73:156 ulatory T cell; VEGF, vascular endothelial growth factor.

  7. Immune Evasion Plays a Critical Role in Myeloma Pathogenesis Immune System Tumor Immune Microenvironment dysregulation perturbation and immunosuppression Genetic alterations Disease progression

  8. Rationale for Immunotherapy in Multiple Myeloma TARGETS FOR IMMUNOTHERAPY – Targeting MM cell surface Ags MoAb Anti-SLAMF7 MoAb Anti-CD38 – In MM patients, the normal immune system favors tumor proliferation Overcoming inhibitory immunosuppression Check-point inhibitors IMIDs Boosting immune effectors Adoptive cell therapy , immunomodulatory agent; MoAb, monoclonal antibody; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; SLAMF7, signaling lymphocyt tion molecule family member 7. Hoyos V and Borrello I. Blood 2016; 128(13): 1

  9. Targets for monoclonal antibody therapy in myeloma Cell ¡surface ¡targets ¡ Signalling ¡molecules ¡ IL-­‑6 ¡ RANKL ¡ DKK1 ¡ VEGF ¡ IGF-­‑1 ¡ SDF-­‑1 α ¡ BAFF, ¡APRIL ¡ Adapted from: Anderson KC. J Clin Oncol 2012;30:4

  10. Three CD38 monoclonal antibodies Chimeric: Fully human: Isatuximab (SAR650984) Daratumumab (DARA) MOR202 (MOR) decreasing immunogenicity Adapted ¡from ¡Imai ¡& ¡Takaoka. ¡Nature ¡Reviews ¡Cancer ¡2006; ¡6: ¡7

  11. Anti-CD38-monoclonal antibodies act through different modes of action in MM In vitro comparison of Daratumumab with analogs of CD38 antibodies plement-­‑dependent ¡cytotoxicity ¡ Nbody-­‑dependent ¡cell-­‑mediated ¡cytotoxicity ¡ grammed ¡cell ¡death ¡ Van de Donk N, et al. Blood. 2018;131(1 Nbody-­‑dependent ¡cell-­‑mediated ¡phagocytosis ¡

  12. Preclinical evidence for anti CD38-moAbs in MM

  13. CD38 expression correlates with cell death (patient samples) Patients divided into tertiles according to CD38 expression on their MM cells (n = 127 patient samples) Dose–response curve according to CD38 expression to evaluate different concentrations of daratumumab in ADCC and CDC assays. : ¡Complement-­‑dependent ¡cytotoxicity ¡ *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant Nijhof et al. Leukemia 2015;29(10): C: ¡AnNbody-­‑dependent ¡cell-­‑mediated ¡cytotoxicity ¡

  14. CD38 expression: determinants of efficacy Patients treated in GEN501 or SIRIUS (MMY2002) MFI, median fluorescence intensity CD38 Nijhof IS, et al. Blood 2016;128:9 PR, partial response

  15. CD38 is rapidly reduced on MM cells from patients CD38 expression on MM cells in BM samples obtained from 21 patients, who were subsequently treated with daratumumab at a dose of 16 mg/kg in the GEN501 study. MFI, median fluorescence intensity CD38 < 0.01; ***P < 0.001; ****P < 0.0001 Nijhof ¡IS, ¡et ¡al. ¡Blood ¡2016;128: progressive disease

  16. Dara combined with LEN or BORT in BORT and LEN-refractory MM Daratumumab induced significant levels of MM cell lysis in the BM-MNC from refractory MM patients. MM cell lysis was significantly improved from 29.7% with daratumumab alone to 39.4% upon combination of daratumumab-lenalidomide in patients were refractory to lenalidomide. ADCC assays 11/11 patients LEN-refractory 8/11 patients BORT-refractory The black circles represent the lenalidomide/bortezomib double- refractory patients Additive Synergy *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant Nijhof IS, et al. Clin Cancer Res. 2015;21(12):2802-2

  17. Clinical evidences for anti CD38-moAbs in MM

  18. Daratumumab Single Agent (GEN501 and SIRIUS*) Median N prior lines: 5 Refractory to Bortezomib and Lenalidomide: 87%; Refractory also to Pomalidomide: 55% Creatinine clearence > 30 (97%); age >75: 11% PR VGPR CR sCR 35 ORR = 31% 3% 30 2% 1% ≥ CR 13% ≥ VGPR 25 10% 20 15 10 18% 5 0 16 mg/kg CBR= 83% ed analysis dence interval; OS, overall survival; PFS, progression-free survival; ORR, overall response rate; PR, sponse; VGPR, very good partial response; CR, complete response, sCR, stringent CR; CBR, clinical Usmani S, et al. Oral presentation: ASH 2015; Orlando, FL. Abstra response (>SD).

  19. Isatuximab monotherapy Median prior lines of therapy 5

  20. MOR202

  21. VD versus VD plus Daratumumab (CASTOR) Median follow-up: 26.9 months Median follow-up: 19.4 months DVd vs Vd DVd vs Vd DVd vs Vd Progression-free survival Progression-free survival-2 MRD negativity 5.2 x 4.8 x 6.0 x P <0.0001 P < 0.0001 P < 0.005 25 MRD-negative rate, % 19 20 15 12 10 5 4 5 2 1 0 10^-4 10^-5 10^-6 DVd Vd DVd Vd 10 –4 10 –5 10 –6 (n=251) (n=247) (n=251) (n=247) Sensitivity threshold Median PFS, mo 16.7 7.1 Median PFS2, mo NR 20.7 DVd (n=251) Vd (n=247) HR (95% CI) 0.32 (0.25–0.40) HR (95% CI) 0.47 (0.36–0.63) P value < 0.0001 P value < 0.0001 Spencer A, et al. Presented at ASH 2017 (Abstract 3145), poster presen Lentzsch S, et al. Presented at ASCO 2017 (Abstract 8036), poster presen S, progression-free survival; HR, hazard ratio, CI, confidence interval; m, months; d, low dose Weisel K, et al. Presented at EHA 2017 (Abstract S459), oral presen xamethasone; D, daratumumab; V, bortezomib; MRD, minimal residual disease

  22. Rd versus Rd Daratumumab (POLLUX) Median follow-up: 32.9 months DRd vs Rd DRd vs Rd DRd vs Rd Progression-free survival Progression-free survival- 2 MRD negativity DRd Rd DRd Rd (n=286) (n=283) (n=286) (n=283) Median PFS, mo NR 17.5 Median PFS2, mo NR 32.3 HR (95% CI) 0.44 (0.34–0.55) HR (95% CI) 0.51 (0.38–0.67) P value <0.0001 P value <0.0001 Dimopoulos MA, et al. Presented at ASH 2017 (Abstract 739), oral present Lentzsch S, et al. Presented at ASCO 2017 (Abstract 8036), poster present S, progression-free survival; HR, hazard ratio, CI, confidence interval; P, P value; d, low Weisel K, et al. Presented at EHA 2017 (Abstract S459), oral presen se dexamethasone; D, daratumumab; R, lenalidomide; MRD, minimal residual disease.

  23. Daratumumab-VMP vs VMP in NDMM transplant ineligible

  24. Daratumumab-VMP versus VMP

  25. Daratumumab-VMP versus VMP

  26. Daratumumab-VMP versus VMP

  27. CD38 in myeloma and beyond: groundwork & outlook

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend