parton showers and matching merging
play

Parton Showers and Matching/Merging Lecture 2 of 2: Matching/Merging - PowerPoint PPT Presentation

Parton Showers and Matching/Merging Lecture 2 of 2: Matching/Merging & Non-Perturbative Corrections (Hadron Decays) Hadronisation Parton Shower Matching & Merging Hard process Peter Skands (Monash University) Feynrules/Madgraph


  1. Parton Showers and Matching/Merging Lecture 2 of 2: Matching/Merging & Non-Perturbative Corrections (Hadron Decays) Hadronisation Parton Shower Matching & Merging Hard process Peter Skands (Monash University) Feynrules/Madgraph School, Hefei 2018

  2. SHOWERS VS MATRIX ELEMENTS ๏ Showers. Nice to have all-orders solution • But only exact in singular (soft & collinear) limits • → gets bulk of bremsstrahlung corrections right, but no precision for hard wide-angle radiation: visible, extra jets • … which is exactly where fixed-order (ME) calculations work! = ? So combine them! F & F+1 @ LO × LL F @ LO × LL F+1 @ LO × LL � (2) � (2) . . . 2 � (2) � (2) � (2) � (2) . . . . . . 2 2 0 1 0 1 0 1 = + ` (loops) ` (loops) ` (loops) � (1) � (1) � (1) . . . � (1) � (1) � (1) � (1) � (1) � (1) 1 . . . . . . 1 1 0 1 2 0 1 2 0 1 2 � (0) � (0) � (0) � (0) . . . � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) 0 . . . . . . 0 0 0 1 2 3 0 1 2 3 0 1 2 3 . . . 0 1 2 3 . . . . . . 0 1 2 3 0 1 2 3 k (legs) k (legs) k (legs) Matching See also: PS, Introduction to QCD , TASI 2012, arXiv:1207.2389 � 2 Peter Skands Monash University

  3. HOW NOT TO DO IT … IN MORE DETAIL ► A (Complete Idiot’s) Solution – Combine 1. [X] ME + showering Run generator for X (+ shower) 2. [X + 1 jet] ME + showering Run generator for X+1 (+ shower) 3. … Run generator for … (+ shower) Combine everything into one sample ► Doesn’t work • [X] + shower is inclusive • [X+1] + shower is also inclusive ≠ What you What you want get Overlapping “bins” One sample 3 � Peter Skands Monash University

  4. EXAMPLE: . Born + Shower What the first-order shower expansion gives you 2 2 + + … Shower Approximation Born + 1 @ LO to Born + 1 2 + What you get from first-order (LO) madgraph 4 � Peter Skands Monash University

  5. EXAMPLE: . Born + Shower 2  2 s ik ✓ s ij 1 ◆� 1 + s jk + … + = g 2 s 2 C F + s ij s jk s IK s jk s ij Example of shower kernel (here, used an “antenna function” for coherent gluon emission from a quark pair) Born + 1 @ LO 2  2 s ik ✓ s ij ◆� 1 + s jk = g 2 s 2 C F + + 2 s ij s jk s IK s jk s ij Example of matrix element; what MG would give you Total Overkill to add these two. All we really need is just that +2 … 5 � Peter Skands Monash University

  6. 1. MATRIX-ELEMENT CORRECTIONS Bengtsson, Sjöstrand, ๏ Exploit freedom to choose non-singular terms PLB 185 (1987) 435 • Modify parton shower to use process-dependent radiation functions for first emission → absorb real correction (suppressing | M n +1 | 2 → P 0 ( z ) Parton Shower P ( z ) = P ( z ) α s and P Jacobian i P i ( z ) /Q 2 Q 2 Q 2 Q 2 i | M n | 2 factors) | {z } MEC Process-dependent MEC → P’ different for each process ๏ • Done in PYTHIA for all SM decays and many BSM ones Norrbin, Sjöstrand, NPB 603 (2001) 297 Based on systematic classification of spin/colour structures ๏ Also used to account for mass effects, and for a few 2 → 2 procs ๏ ๏ Difficult to generalise beyond one emission • Parton-shower expansions complicated & can have “dead zones” • Achieved in VINCIA (by devising showers that have simple expansions) Giele, Kosower, Skands, PRD 84 (2011) 054003 • Only recently done for hadron collisions Fischer et al, arXiv:1605.06142 6 � Peter Skands Monash University

  7. MECS WITH LOOPS: POWHEG Acronym stands for: Po sitive W eight H ardest E mission G enerator. Nason, JHEP 0411 (2004) 040 Start at Born level Loops Frixione, Nason, Oleari JHEP 0711 (2007) 070 + POWHEG Box JHEP 1006 (2010) 043 | M F | 2 +2 Note: still LO for X+1 Generate “shower” emission Shower for X+2, … | M F +1 | 2 LL X a i | M F | 2 +1 ∼ X i ∈ ant r e +0 w Correct to Matrix Element ∈ o h s | M F +1 | 2 n P a i | M F | 2 a i a i → +0 +1 +2 +3 Legs o t r a p y ๏ Method is widely applied/available, can be used r P | | a Unitarity of Shower n i with PYTHIA, HERWIG, SHERPA d r Z o : Virtual = − Real t a ๏ Subtlety 1: Connecting with parton shower e p Z e R • Truncated Showers & Vetoed Showers Correct to Matrix Element Z | M F | 2 → | M F | 2 + 2Re[ M 1 ๏ Subtlety 2: Avoiding (over)exponentiation of F M 0 F ] + Real hard radiation • Controlled by “hFact” parameter (POWHEG) 7 � Peter Skands Monash University

  8. 2 : SLICING (MLM & CKKW-L) First emission : “the HERWIG correction” Use the fact that the angular-ordered HERWIG parton shower has a “dead zone” for hard wide-angle radiation (Seymour, 1995) F @ LO × LL-Soft (H ERWIG Shower) F+1 @ LO × LL (H ERWIG Corrections) F @ LO 1 × LL (H ERWIG Matched) ! � (2) � (2) � (2) � (2) � (2) � (2) . . . . . . . . . 2 2 2 0 1 0 1 0 1 + = ` (loops) ` (loops) ` (loops) � (1) � (1) � (1) � (1) � (1) � (1) � (1) � (1) � (1) . . . . . . . . . 1 1 1 ! 0 1 2 0 1 2 0 1 2 � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) . . . . . . . . . 0 0 0 0 1 2 3 0 1 2 3 0 1 2 3 . . . . . . . . . 0 1 2 3 0 1 2 3 0 1 2 3 k (legs) k (legs) k (legs) Many emissions : the MLM & CKKW-L prescriptions F @ LO × LL-Soft (excl) F+1 @ LO × LL-Soft (excl) F+2 @ LO × LL (incl) F @ LO 2 × LL (MLM & (L)-CKKW) � (2) � (2) � (2) � (2) . . . . . . . . . . . . 2 2 2 2 0 0 0 0 + + = ` (loops) ` (loops) ` (loops) ` (loops) � (1) � (1) � (1) � (1) � (1) � (1) � (1) � (1) . . . . . . . . . . . . 1 1 1 1 0 1 0 1 0 1 0 1 � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) � (0) 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 k (legs) k (legs) k (legs) k (legs) (CKKW & Lönnblad, 2001) (Mangano, 2002) (+many more recent; see Alwall et al., EPJC53(2008)473) � 8 Peter Skands Monash University

  9. THE GAIN THE COST Example: LHC 7 : W + 20-GeV Jets Example: e + e - → Z → Jets 2. Time to generate 1000 events W + N jets (Z → partons, fully showered & matched. No hadronization.) MLM w 3 rd order Matrix Elements 1000 SHOWERS Shower (w 1 st order MECs) 1000s SHERPA (CKKW-L) Time 100s 10s Matching Order 0 1 2 3 N JETS 1s 0.1s RATIO 2 3 4 5 6 Z → n : Number of Matched Emissions See e.g. Lopez-Villarejo & Skands, arXiv:1109.3608 Plot from mcplots.cern.ch; see arXiv:1306.3436 � 9 Peter Skands Monash University

  10. 3 : SUBTRACTION Examples: MC@NLO, aMC@NLO ๏ LO × Shower ๏ NLO X (2) X+1 (2) X (2) X+1 (2) … … X+1 (1) X+2 (1) X+3 (1) X+1 (1) X+2 (1) X+3 (1) X (1) … X (1) … X+1 (0) X+2 (0) X+3 (0) X+1 (0) X+2 (0) X+3 (0) Born … Born … … Fixed-Order Matrix Element … Shower Approximation 10 � Peter Skands Monash University

  11. MATCHING 3: SUBTRACTION Examples: MC@NLO, aMC@NLO ๏ LO × Shower ๏ NLO - Shower NLO X (2) X+1 (2) X (2) X+1 (2) … … X+1 (1) X+2 (1) X+3 (1) X+1 (1) X+2 (1) X+3 (1) X (1) … X (1) … X+1 (0) X+2 (0) X+3 (0) X+1 (0) X+2 (0) X+3 (0) Born … Born … Expand shower approximation to … Fixed-Order Matrix Element NLO analytically, then subtract: Fixed-Order ME minus Shower … … Shower Approximation Approximation (NOTE: can be < 0!) 11 � Peter Skands Monash University

  12. MATCHING 3: SUBTRACTION Examples: MC@NLO, aMC@NLO ๏ LO × Shower ๏ (NLO - Shower NLO ) × Shower X (2) X+1 (2) X (1) X (1) … … X+1 (1) X+2 (1) X+3 (1) X (1) … X (1) X (1) X (1) X (1) … X+1 (0) X+2 (0) X+3 (0) X+1 (0) X (1) X (1) Born … Born … Fixed-Order ME minus Shower … … Fixed-Order Matrix Element Approximation (NOTE: can be < 0!) Subleading corrections generated by … … Shower Approximation shower off subtracted ME 12 � Peter Skands Monash University

  13. MATCHING 3: SUBTRACTION Examples: MC@NLO, aMC@NLO ๏ Combine ➤ MC@NLO Frixione, Webber, JHEP 0206 (2002) 029 • Consistent NLO + parton shower (though correction events can have w<0) • Recently, has been fully automated in aMC@NLO Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048 X (2) X+1 (2) … X+1 (1) X+2 (1) X+3 (1) X (1) … X+1 (0) X+2 (0) X+3 (0) Born … NB: w < 0 are a problem because they kill efficiency: Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights) 13 � Peter Skands Monash University

  14. POWHEG VS MC@NLO ๏ Both methods include the complete Example: Higgs Production 10 1 first-order (NLO) matrix elements. no damping no damping, LHEF • Difference is in whether only the h = m H / 1 . 2 GeV 10 0 h = m H / 2 GeV shower kernels are exponentiated h = 30 GeV (MC@NLO) or whether part of the T (pb/GeV) h = 30 GeV, LHEF 10 − 1 NLO matrix-element corrections are too No (POWHEG) 10 − 2 dp H Damping d σ Pure NLO ๏ In POWHEG, how much of the MEC 10 − 3 Plot from Bagnashi, Vicini, you exponentiate can be controlled JHEP 1601 (2016) 056 by the “hFact” parameter 10 − 4 0 50 100 150 200 250 300 350 400 p H T (GeV) • Variations basically span range h 2 between MC@NLO-like case, and D h = h 2 + ( p H ⊥ ) 2 original (hFact=1) POWHEG case (~ PYTHIA-style MECs) R s = D h R div R f = (1 � D h ) R div . , exponentiated not exponentiated 14 � Peter Skands Monash University

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend