particle physics ewsb after lhc 8
play

Particle Physics EWSB after LHC 8 Abdelhak DJOUADI (LPT CNRS - PowerPoint PPT Presentation

Particle Physics EWSB after LHC 8 Abdelhak DJOUADI (LPT CNRS & U. Paris-Sud) I: The SM and EWSB The Standard Model in brief The Higgs mechanism Constraints on M H II: Higgs Physics Higgs decays Higgs production a


  1. Particle Physics ≡ EWSB after LHC 8 Abdelhak DJOUADI (LPT CNRS & U. Paris-Sud) I: The SM and EWSB • The Standard Model in brief • The Higgs mechanism • Constraints on M H II: Higgs Physics • Higgs decays • Higgs production a hadron colliders • Implications of the discovery III: Beyond the SM: • Why beyond the SM? • The case of SUSY and the MSSM • What next? Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.1/51

  2. 1. The Standard Model: brief introduction The Standard Model describes electromagnetic, strong and weak interactions: Electromagnetic interaction (QED): Particules de: mati` ere (s=1 / 2) force (s=1) bosons-jauge 3 familles de fermions – subjects: electric charged particles, – mediator: one massless photon, quark up quark charm quark top gluon 8 g 3 u 3 c c → 3 t – conserves P, C, T... et of course Q. Q → +2/3 +2/3 +2/3 0 ∼ 5 MeV 1.6 GeV 172 GeV 0 m → Strong (nuclear) interaction (QCD): quark down quark strange quark bottom photon γ 3 s – quarks appearing in three q,q ,q, 3 d 3 b –1/3 –1/3 –1/3 0 – interacting via exchange of color, ∼ 5 MeV 0.2 GeV 4.9 GeV 0 – mediators: the massless gluons, neutrino µ neutrino e τ neutrino boson Z ν µ ν e ν τ Z 0 – conserves P,C,T and color number; – color=attractive ⇒ confinement! 0 0 0 0 ∼ 0 ∼ 0 ∼ 0 91.2 GeV muon tau electron bosons W Weak (nuclear) interaction: µ e τ W ± – subjects: all fermions; ± 1 –1 –1 –1 – mediators: massive W + , W − , Z! 0.5 MeV 0.1 GeV 1.7 GeV 80.4 GeV (only short range interaction), – does not conserve parity: f L � = f R ; (ex: no ν R ⇒ ν masseless); – does not conserve CP: n P ≫ n ¯ P . Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.2/51

  3. 1. The Standard Model: brief introduction The SM of the electromagnetic, weak and strong interactions is: • relativistic quantum field theory: quantum mechanics+special relativity, • based on gauge symmetry: invariance under internal symmetry group, • a carbon–copy of QED, the quantum field theory of electromagnetism. QED: invariance under local transformations of the abelian group U(1) Q : – transformation of electron field: Ψ ( x ) → Ψ ′ ( x ) = e ie α ( x ) Ψ ( x ) µ ( x )= A µ ( x ) − 1 – transformation of photon field: A µ ( x ) → A ′ e ∂ µ α ( x ) The Lagrangian density is invariant under above field transformations 4 F µν F µν + i ¯ Ψ D µ γ µ Ψ − m e ¯ L QED = − 1 ΨΨ field strength F µν = ∂ µ A ν − ∂ ν A µ and cov. derivative D µ = ∂ µ − ieA µ . Very simple, consistent, aesthetical and extremely successful theory: • minimal coupling: interaction uniquely determined once group fixed, • invariance implies massless photon and allows massive fermions, • mathematically consistent: perturbative, unitary, renormalisable, • very predictive theoretically and very well tested experimentally. Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.3/51

  4. 1. The Standard Model: brief introduction SM is based on the gauge symmetry G SM ≡ SU ( 3 ) C × SU ( 2 ) L × U ( 1 ) Y • The local/gauge symmetry group SU ( 3 ) C describes the strong force: – interaction between quarks which are SU(3) triplets: q, q , q, – mediated by 8 gluons, G a µ corresponding to 8 generators of SU ( 3 ) C Gell-Man 3 × 3 matrices: [ T a , T b ] = if abc T c with Tr [ T a T b ] = 1 2 δ ab – asymptotic freedom: interaction “weak” at high energy, α s = g 2 4 π ≪ 1 s ⇒ the partons are free at high-energy and confined at low-energies... The Lagrangian of the theory is a simple extension of the one of QED: L QCD = − 1 4 G a µν G µν q i D µ γ µ q i ( − � a + i � i ¯ i m i ¯ q i q i ) with G a µν = ∂ µ G a ν − ∂ ν G a µ + g s f abc G b µ G c ν D µ = ∂ µ − ig s T a G a µ . Interactions/couplings are then uniquely determined by SU(3) structure: – fermion gauge boson couplings : − g i ψ V µ γ µ ψ – V self-couplings : ig i Tr( ∂ ν V µ − ∂ µ V ν )[ V µ , V ν ]+ 1 2 g 2 i Tr[ V µ , V ν ] 2 – the gluons are massless while quarks can be massive (like in QED)... Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.4/51

  5. 1. The Standard Model: brief introduction SM is based on the gauge symmetry G SM ≡ SU ( 3 ) C × SU ( 2 ) L × U ( 1 ) Y • SU ( 2 ) L × U ( 1 ) Y describes the electromagnetic+weak=EW interaction: – between the three families of quarks and leptons: f L / R = 1 2 ( 1 ∓ γ 5 ) f I 3L , 3R � ν e L , R = e − = ± 1 � R , Q = ( u 2 , 0 ⇒ L = d ) L , u R , d R e − f f ⇒ Y L = − 1 , Y R = − 2 , Y Q = 1 3 , Y u R = 4 3 , Y d R = − 2 Y f = 2Q f − 2I 3 3 Same holds for the two other generations: ( µ, ν µ , c , s ) and ( τ, ν τ , t , b ) . There is no ν R field (and neutrinos are thus exactly and stay massless). – mediated by the W i µ (isospin) and B µ (hypercharge) gauge bosons corresping to the 3 generators (Pauli matrices) of SU(2) and are massless T a = 1 2 τ a ; [ T a , T b ] = i ǫ abc T c and [ Y , Y ] = 0 . Lagrangian simple: with fields strengths and covariant derivatives as QED W a µν = ∂ µ W a ν − ∂ ν W a µ + g 2 ǫ abc W b µ W c ν , B µν = ∂ µ B ν − ∂ ν B µ ψ , T a = 1 � ∂ µ − igT a W a µ − ig ′ Y � 2 τ a D µ ψ = 2 B µ 4 B µν B µν + ¯ F Li iD µ γ µ F Li + ¯ f Ri iD µ γ µ f R i L SM = − 1 µν W µν a − 1 4 W a Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.5/51

  6. 1. The Standard Model: brief introduction But if gauge boson and fermion masses are put by hand in L SM V V µ V µ and/or m f ¯ 1 2 M 2 ff terms: breaking of gauge symmetry. This statement can be visualized by taking the example of QED where the photon is massless because of the local U(1) Q local symmetry: Ψ ( x ) → Ψ ′ ( x )= e ie α ( x ) Ψ ( x ) , A µ ( x ) → A ′ µ ( x )= A µ ( x ) − 1 e ∂ µ α ( x ) • For the photon (or B field for instance) mass we would have: A A µ A µ → 1 1 A ( A µ − 1 e ∂ µ α )( A µ − 1 e ∂ µ α ) � = 1 A A µ A µ 2 M 2 2 M 2 2 M 2 and thus, gauge invariance is violated with a photon mass. • For the fermion masses, we would have (e.g. for the electron): � � 1 2 ( 1 − γ 5 ) + 1 m e ¯ ee = m e ¯ e 2 ( 1 + γ 5 ) e = m e ( ¯ e R e L + ¯ e L e R ) manifestly non–invariant under SU(2) isospin symmetry transformations. We need a less “brutal” way to generate particle masses in the SM: ⇒ The Brout-Englert-Higgs mechanism ⇒ the Higgs particle H. Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.6/51

  7. 2. The Higgs mechanism in the SM In the SM, if gauge boson and fermion masses are put by hand in L SM breaking of gauge symmetry ⇒ spontaneous EW symmetry breaking: � � φ + introduce a new doublet of complex scalar fields: Φ = , Y Φ =+ 1 φ 0 with a Lagrangian density that is invariant under SU ( 2 ) L × U ( 1 ) Y L S = ( D µ Φ ) † ( D µ Φ ) − µ 2 Φ † Φ − λ ( Φ † Φ ) 2 µ 2 > 0 : 4 scalar particles.. µ 2 < 0 : Φ develops a vev: V( � ) V( � ) � 0 | Φ | 0 � = ( 0 2 ) √ v / 1 with ≡ v = ( − µ 2 /λ ) � � 2 > > 0 0 2 2 + v � > 0 � < 0 = 246 GeV – symmetric minimum: instable – true vaccum: degenerate ⇒ to obtain the physical states, write L S with the true vacuum (diagoalised fields/interactions). Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.7/51

  8. 2. The Higgs mechanism in the SM • Write Φ in terms of four fields θ 1 , 2 , 3 ( x ) and H(x) at 1st order: Φ ( x ) = e i θ a ( x ) τ a ( x ) / v 2 ( θ 2 + i θ 1 1 2 ( 0 1 v + H ( x ) ) ≃ v + H − i θ 3 ) √ √ • Make a gauge transformation on Φ to go to the unitary gauge: Φ ( x ) → e − i θ a ( x ) τ a ( x ) Φ ( x ) = 1 2 ( 0 v + H ( x ) ) √ • Then fully develop the term | D µ Φ ) | 2 of the Lagrangian L S : | D µ Φ ) | 2 = � 2 µ − i g 2 � τ a � �� 2 W a � ∂ µ − ig 1 2 B µ Φ 2 � � � � 0 �� − ig2 ∂ µ − i 2 ( g 2 W 3 2 ( W 1 µ − iW 2 µ + g 1 B µ ) µ ) � � = 1 � � v + H − ig2 ∂ µ + i 2 2 ( g 2 W 3 µ − g 1 B µ ) 2 ( W 1 µ + iW 2 µ ) � � = 1 2 ( ∂ µ H ) 2 + 1 µ | 2 + 1 8 g 2 2 ( v + H ) 2 | W 1 µ + iW 2 8 ( v + H ) 2 | g 2 W 3 µ − g 1 B µ | 2 • Define the new fields W ± µ and Z µ [ A µ is the orthogonal of Z µ ]: g 2 W 3 g 2 W 3 W ± = µ − g 1 B µ µ + g 1 B µ 1 √ √ 2 ( W 1 µ ∓ W 2 µ ) , Z µ = , A µ = √ g 2 2 + g 2 g 2 2 + g 2 1 1 with sin 2 θ W ≡ g 2 / � g 2 2 + g 2 1 = e / g 2 Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.8/51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend