particle flow bayes rule
play

Particle Flow Bayes Rule Xinshi Chen 1* , Hanjun Dai 1* , Le - PowerPoint PPT Presentation

Particle Flow Bayes Rule Xinshi Chen 1* , Hanjun Dai 1* , Le Song 1,2 1 Georgia Tech, 2 Ant Financial (*equal contribution) ICML 2019 Sequential Bayesian Inference 1. Prior distribution () # $ %


  1. Particle Flow Bayes’ Rule Xinshi Chen 1* , Hanjun Dai 1* , Le Song 1,2 1 Georgia Tech, 2 Ant Financial (*equal contribution) ICML 2019

  2. Sequential Bayesian Inference 𝑦 1. Prior distribution 𝜌(𝑦) 𝑝 # 𝑝 $ …… 𝑝 % …… 2. Likelihood function π‘ž(𝑝|𝑦) … π‘ž 𝑦 𝑝 # π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 #:% prior 𝜌(𝑦) 3. Observations 𝑝 # , 𝑝 $ , … , 𝑝 % 𝑝 # 𝑝 $ 𝑝 % arrive sequentially π‘ž 𝑦 𝑝 #:% ∝ π‘ž 𝑦 𝑝 #:%,# π‘ž 𝑝 % 𝑦 Need efficient online update! updated posterior current posterior Likelihood Or prior Sequential Monte Carlo: 4 from prior 𝜌(𝑦) # , … , 𝑦 2 β€’ 𝑂 particles 𝒴 2 = 𝑦 2 Reweight the particles using likelihood β€’ Particle degeneracy problem β€’ (Doucet et al., 2001)

  3. Our Approach: Particle Flow # , … , 𝑦 2 4 } , from prior 𝝆(π’š) β€’ 𝑢 particles 𝒴 2 = {𝑦 2 β€’ Move particles through an ordinary differential equation (ODE) 𝑒𝑦 ; 𝑦 0 = 𝑦 2 and 𝑒𝑒 = 𝑔 𝒴 2 , 𝑝 # , 𝑦 𝑒 , 𝑒 ; = 𝑦(π‘ˆ) ⟹ solution 𝑦 # 𝑦 𝑝 # 𝑝 $ 𝑝 % …… Does a unified flow velocity 𝑔 exist? π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 # prior 𝜌(𝑦) π‘ž 𝑦 𝑝 #:% Does P article F low B ayes’ R ule (PFBR) exist? … 𝑝 # 𝑝 $ 𝑝 % # , … , 𝑦 2 4 } 𝒴 2 = {𝑦 2 # , … , 𝑦 # 4 } 𝒴 # = {𝑦 # # , … , 𝑦 $ 4 } 𝒴 $ = {𝑦 $ B B B A 𝑔 𝒴 # , 𝑝 $ , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 2 , 𝑝 # , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 $ , 𝑝 C , 𝑦(𝑒) 𝑒𝑒 2 2 2

  4. Our Approach: Particle Flow β€’ Move particles to next posterior through an ordinary differential equation (ODE) 𝑒𝑦 ; 𝑦 0 = 𝑦 2 and 𝑒𝑒 = 𝑔 𝒴 2 , 𝑝 # , 𝑦 𝑒 , 𝑒 ; = 𝑦(π‘ˆ) ⟹ solution 𝑦 # 𝑦 𝑝 # 𝑝 $ 𝑝 % …… Does a unified flow velocity 𝑔 exist? π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 # prior 𝜌(𝑦) π‘ž 𝑦 𝑝 #:% Does P article F low B ayes’ R ule (PFBR) exist? … 𝑝 # 𝑝 $ 𝑝 % # , … , 𝑦 2 4 } 𝒴 2 = {𝑦 2 Yes!!! # , … , 𝑦 # 4 } 𝒴 # = {𝑦 # # , … , 𝑦 $ 4 } 𝒴 $ = {𝑦 $ E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 𝑔: = 𝛼 B B B A 𝑔 𝒴 # , 𝑝 $ , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 2 , 𝑝 # , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 $ , 𝑝 C , 𝑦(𝑒) 𝑒𝑒 2 2 2

  5. Existence of Particle Flow Bayes’ Rule Langevin dynamics βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 ✘ stochastic flow 𝑒𝑦 𝑒 = 𝛼 E log 𝜌 𝑦 π‘ž(𝑝|𝑦) 𝑒𝑒 + 2 𝒆𝒙 𝒖 Fokker-Planck Equation + Continuity Equation βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 deterministic, closed-loop βœ“ deterministic flow 𝑒𝑦 𝑒 = 𝛼 E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ βˆ‡ E log 𝒓(π’š, 𝒖) 𝑒𝑒 ✘ closed-loop flow: depends on 𝒓(π’š, 𝒖) Optimal control theory: closed-loop to open loop βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 deterministic, open-loop βœ“ deterministic flow E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 𝑒𝑒 𝑒𝑦 𝑒 = 𝛼 βœ“ open-loop flow

  6. Parameterization The unified flow velocity is in form of: E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 π’ˆ(𝝆 π’š , 𝒒 𝒑 π’š , π’š, 𝒖): = 𝛼 𝑢 π’†π’š 𝟐 𝝔 π’š 𝒐 , 𝒑, π’š 𝒖 , 𝒖 𝒆𝒖 = π’ˆ 𝓨, 𝒑, π’š 𝒖 , 𝒖 ≔ π’Š 𝑢 Z 𝒐\𝟐 Deep set π’Š neural networks

  7. Experiment 1: Multimodal Posterior Gaussian Mixture Model β€’ prior 𝑦 # , 𝑦 $ ∼ π’ͺ 0,1 observations o|𝑦 # , 𝑦 $ ∼ # $ π’ͺ 𝑦 # , 1 + # $ π’ͺ(𝑦 # + 𝑦 $ , 1) β€’ β€’ With 𝑦 # , 𝑦 $ = (1, βˆ’2) , the resulting posterior 𝒒(π’š|𝒑 𝟐 , … , 𝒑 𝒏 ) will have two modes: βˆ’ 3 βˆ’ 3 βˆ’ 3 βˆ’ 4 x 10 x 10 x 10 x 10 5 14 3 0.018 3 10 3 2.2 3 3 4 2 9 0.016 2 12 2 2 2 3 1.8 8 0.014 2 1.6 10 1 7 1 1 1 0.012 1 1.4 2 6 0 0 8 0 1.2 0 0.01 0 5 βˆ’ 1 1 0.008 6 βˆ’ 1 4 βˆ’ 1 βˆ’ 1 βˆ’ 1 βˆ’ 2 0.8 0.006 3 βˆ’ 3 0.6 1 4 βˆ’ 2 βˆ’ 2 βˆ’ 2 βˆ’ 2 0.004 2 βˆ’ 4 0.4 βˆ’ 5 2 βˆ’ 3 βˆ’ 3 0.2 βˆ’ 3 1 βˆ’ 3 0.002 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 (a) True posterior (d) Gibbs Sampling (e) One-pass SMC (b) Stochastic Variational (c) Stochastic Gradient Inference Langevin Dynamics

  8. Experiment 1: Multimodal Posterior PFBR vs one-pass SMC Visualization of the evolution of posterior density from left to right.

  9. Experiment 2: Efficiency in #Particles Our Approach Comparison to SMC and ASMC (Autoencoding SMC, Filtering Variational Objectives, and Variational SMC) (Le et al., 2018; Maddison et al., 2017; Naesseth et al., 2018).

  10. Thanks! Poster: Pacific Ballroom #218, Tue, 06:30 PM Contact: xinshi.chen@gatech.edu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend