part iii ofdm
play

Part III. OFDM Discrete Fourier Transform; Circular Convolution; - PowerPoint PPT Presentation

Part III. OFDM Discrete Fourier Transform; Circular Convolution; Eigen Decomposition of Circulant Matrices 1 Motivation { Z m } LTI Filter Channel { V m } { u m } { h ` } Previous parts: only receiver-centric methods MLSD with Viterbi


  1. Part III. OFDM Discrete Fourier Transform; Circular Convolution; Eigen Decomposition of Circulant Matrices 1

  2. Motivation { Z m } LTI Filter Channel { V m } { u m } { h ` } • Previous parts: only receiver-centric methods ‣ MLSD with Viterbi algorithm: optimal but computationally infeasible ‣ Linear equalizations: simple but suboptimal. • Is it possible to “pre-process” at Tx and “post-process” { u m } { V m } at Rx, so that the end-to-end channel is ISI-free? ‣ Note: ZF can already remove ISI completely, but the noises after ZF are not independent anymore ‣ Post processing should preserve mutual independence of the noises • Observation: IDTFT and DTFT will work, “if” we are willing to roll back to analog communication 2

  3. Z 1 / 2 u ( f ) e j2 π mf d f IDTFT IDTFT: u m = ˘ u ( f ) ˘ { u m } − 1 / 2 { h ` } { Z m } ˘ ˘ X DTFT: V m e − j2 π mf DTFT V ( f ) = V ( f ) { V m } m → ˘ V ( f ) = ˘ u ( f ) + ˘ V m = ( h ∗ u ) m + Z m ← h ( f )˘ Z ( f ) In frequency domain, the outcome at a Why it works: because is e j2 π mf frequency only depends on the input at an eigenfunction to any LTI filter. that frequency: Using these eigenfunctions as a ⟹ no ISI! new basis to carry data renders infinite # of ISI-free channels in the frequency domain. Caveat: analog communication in the frequency domain 3

  4. Discretized DTFT: Discrete Fourier Transform Idea: use the discretized version of DTFT/IDTFT Z 1 / 2 N − 1 1 u ( f ) e j2 π mf d f u [ k ] e j2 π mk X IDTFT: N -pt. IDFT: u m = ˘ u m = ˘ N f = k √ N − 1 / 2 k =0 N N − 1 1 k = 0 , ..., N − 1 V m e − j2 π mk ˘ ˘ X X DTFT: V m e − j2 π mf N -pt. DFT: V [ k ] = V ( f ) = N m = 0 , ..., N − 1 √ N m =0 m Note: N -point DFT/IDFT are transforms between two length- N sequences, indexed from 0 to N –1 . Unfortunately, the convolution-multiplication property of the DTFT-IDTFT pair no longer holds We need a new kind of convolution for DFT-IDFT pair! 4

  5. Circular Convolution Definition: for two length- N sequences { x n } N − 1 n =0 , { h n } N − 1 n =0 N − 1 X ( h ~ x ) n , n = 0 , 1 , ..., N − 1 h ` x ( n − ` ) mod N , ` =0 h 0 h 0 n = 0 n = 2 h N − 1 h 1 h N − 1 h 1 x 0 x 2 x 1 x 1 x N − 1 h 2 h 2 x 0 x 2 x N − 1 Convolution-multiplication property: for length- N sequences { x n } N − 1 n =0 , { y n } N − 1 n =0 , { h n } N − 1 with , y n = ( h ~ x ) n n =0 √ N ˘ y [ k ] = ˘ h [ k ]˘ x [ k ] , ∀ k = 0 , 1 , ..., N − 1 5

  6. Implement Circular Conv. in LTI Channel Original LTI channel (ignore noise) : linear convolution L − 1 X v m = ( h ∗ u ) m = h ` u m − ` , m = 0 , ..., N − 1 ( N � L ) ` =0 h 0 h 1 h L − 1 · · · u N − L u N − L u N − 1 u 0 u N − 1 · · · · · · · · · +1 +1 cyclic prefix Desired channel (ignore noise) : circular convolution L − 1 X v m = ( h ~ u ) m = h ` u ( m − ` ) mod N , m = 0 , ..., N − 1 ` =0 6

  7. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � add cyclic prefix transmit receive remove cyclic prefix u N − L +1 x 1 y 1 h L − 1 CP u N − 1 x L − 1 y L − 1 h 0 u 0 u 0 x L y L v 0 v 0 x L +1 y L +1 u 1 u 1 v 1 v 1 x N + L − 1 y N + L − 1 u N − 1 u N − 1 v N − 1 v N − 1 convolution v m = ( h ~ u ) m , m = 0 , ..., N − 1 7

  8. � � � � � � � � � � � � � � � � � � � � � � � � � � � Matrix Form of Circular Convolution v m = ( h ~ u ) m , m = 0 , ..., N − 1 ∈ C N v = h c u   h 0 h L − 1 h 1 0 0 v 0 u 0 · · ·   h 1 h 0   v 1 u 1 0 h L − 1  h 1    h 0 h L − 1 0 =     h 1 h 0 h L − 1 0     0   h L − 1 h L − 2 h 0 0 0 v N − 1 u N − 1 · · · h c v u with noise: ∈ C N V = h c u + Z 8

  9. � � � � � � � � � � � � � � � � � � � � � Linear Algebraic View Circulant Matrix Every row/column is a circular shift of the first row/column   h 0 h L − 1 h 1 0 0 · · ·   h 1 h 0   0 h L − 1  h 1    h 0 h L − 1 0     h 1 h 0 h L − 1 0     0   h L − 1 h L − 2 h 0 0 0 · · · h c φ ( k ) N e j2 π k 1 Define m � N m , m = 0 , ..., N − 1 √ h [ k ] φ ( k ) N ˘ ( h ⊛ φ ( k ) ) m = √ Can show: for any , { h ℓ } N − 1 m ℓ =0 9

  10. � � � � � � � � � � � � � � � � � � � � ���� ���������� � � � � √ h [ k ] φ ( k ) N ˘ ( h ⊛ φ ( k ) ) m = m = 0 , ..., N − 1 m , ⇒ φ ( k ) �� �� ����������� �� ������ h c = √ N ˘ h [ k ] � ��� ��� k = 0 , ..., N − 1 �     φ ( k ) h 0 h L − 1 h 1 0 0 · · · 0     h 1 h 0     φ ( k ) 0 h L − 1  h 1    1 N ˘     √ φ ( k ) h [ k ] h 0 h L − 1 0 =         h 1 h 0 h L − 1 0 ˘     h ( f ) | f = k     N 0     φ ( k ) h L − 1 h L − 2 h 0 0 0 · · · N − 1 φ ( k ) h c √ h c φ ( k ) = N ˘ h [ k ] φ ( k ) , ∀ k = 0 , ..., N − 1 Furthermore, can show that ⟨ φ ( k ) , φ ( l ) ⟩ = { k = l } ⇒ { φ ( k ) | k = 0 , ..., N − 1 } : an orthonormal basis of C N = 10

  11. Hence, we can obtain the eigenvalue decomposition of any circulant matrix h c h Φ H h c = ΦΛ ˘ � φ (0) ... φ ( N − 1) � Φ � h � diag(˘ h ( f 0 ) , ˘ h ( f 1 ) , ..., ˘ h ( f N − 1 )) Λ ˘ f k � k N , k = 0 , ..., N − 1 { h n | n = 0 , ..., N − 1 } � ��� ���� ������ �� h c ˘ h ( f ) � ���� �� { h n } Can diagonalize the channel (remove ISI) without knowing it using the DFT basis. Only true for circulant matrix! 11

  12. ������ IDFT matrix and DFT matrix : Φ H Φ N − 1 1 u [ k ] e j2 π mk X N -pt. IDFT: u m = ˘ j2 π mk 1 � � N ( Φ ) m,k = N exp √ N √ N k =0 N − 1 − j2 π mk 1 � � ( Φ H ) m,k = N exp 1 V m e − j2 π mk ˘ X N -pt. DFT: V [ k ] = √ N N √ N m =0 ˘ V = Φ H V u = Φ ˘ u , Pre-processing and post-processing: h Φ H u + Z Φ H V = Λ ˘ h Φ H u + Φ H Z V = h c u + Z = ΦΛ ˘ ⇒ ˘ u + ˘ ˘ V = Λ ˘ h ˘ ∼ CN (0 , N 0 ) , k = 0 , 1 , ..., N − 1 = Z Z [ k ] because the DFT matrix is unitary Φ H 12

  13. Equivalent Parallel Channels OFDM creates N parallel non-interfering sub-channels: V [ k ] = ˘ ˘ u [ k ] + ˘ h ( f k )˘ Z [ k ] , k = 0 , 1 , ..., N − 1 Channel gain at the k -th branch: h ( f k ) = ˘ ˘ N ˘ h ( k √ ˘ h ( f ) : DTFT of { h ` } N ) = h [ k ] = periodic copies of ˘ h a ( f T ) , period 1 h a ( τ ) � ( h b ∗ g )( τ ) Equivalently, the overall bandwidth 2 W is partitioned into N narrowbands, and each sub-channel use that narrowband for transmission (centered at ) k 2 W N , k = 0 , ..., N − 1 Subcarrier spacing: 2 W N 13

  14. Capacity of Parallel Channels Capacity of N parallel channels is ˘ ˘ h ( f 0 ) Z [0] the sum of individual capacities coding across subcarriers does not help! ˘ u [0] ˘ V [0] Since channel gains are di ff erent, ˘ ˘ h ( f 1 ) Z [1] each branch has di ff erent capacity ˘ u [1] ˘ V [1] Goal: maximize capacity subject . . to a total power constraint . . . . Power allocation: maximize rate N − 1 P k : power of branch k X ˘ P k ≤ NP ˘ h ( f N − 1 ) Z [ N − 1] k =0 N − 1 � � 2 P k 1 + | ˘ h ( f k ) | ˘ u [ N − 1] ˘ � V [ N − 1] R = log N 0 k =0 14

  15. ������� �� Water-filling N − 1 2 P k ✓ ◆ � � � ˘ X max log 1 + h ( f k ) , � � N 0 � P 0 ,...,P N − 1 k =0 N − 1 X P k = NP, P k ≥ 0 , k = 0 , . . . , N − 1 n =0 Solved by standard techniques in convex optimization (Lagrange multipliers, KKT condition) Final solution: � + � N 0 P ∗ ν − k = ( x ) + � max(0 , x ) 2 | ˘ h ( f k ) | � + N − 1 � N 0 � = NP ν �������� ν − 2 | ˘ h ( f k ) | k =0 15

  16. Total Area = P ν P ∗ P ∗ L − 1 P ∗ k 0 · · · N 0 | ˘ h ( f k ) | 2 k Main lesson: one should h ( f k ) = ˘ ˘ h b ( k 2 W g ( k 2 W N )˘ N ) allocate higher rate when baseband frequency response at the branch with better at f = k 2 W channel condition N 16

  17. ������� �� Capacity of Frequency Selective Channel Pre-processing (IDFT) and post-processing (DFT) are both invertible in OFDM systems The only loss: length- ( L –1) cyclic prefix, negligible when we take N → ∞ The power allocation problem becomes Z 1 / 2 2 P ( f ) ✓ ◆ � � � ˘ max log 1 + h ( f ) d f, � � N 0 � P ( f ) − 1 / 2 Z 1 / 2 P ( f ) d f = P, P ( f ) ≥ 0 , f ∈ [ − 1 / 2 , 1 / 2] − 1 / 2 Optimal solution: water-filling on the continuous spectrum 17

  18. Water-filling in Frequency-Selective Channel Total Area = P ν N 0 | ˘ h a ( f ) | 2 k + W − W 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend