pairing schemes for hfb calculations results and
play

Pairing schemes for HFB calculations: Results and discussions K. - PowerPoint PPT Presentation


  1. ✢ ✓ ✎ ✟ ☛ ✌ ✔ ☎ ✝ ✔ ☎✆ ✄ ✁✂ � ✒ ✑ ✟ ✁ ✂ ☛ ✍ ✕ ✛✜ ✕ �✚ ✙ ✝ ☎ ✟ ✠ ✟ ✄ ✆ ✔ ✍ ☛ ☛ ✄ ✏ � � ✁✂ ✄ ☎✆ ✝ ✞✟ ✝ ✁✂ ✁ ✝ ☎ ✟ ☎✆ ☛ ✆ ✝ ✎ ✌✍ ✟ ✞✟ ☞ ✟ ✡☛ ☎ ✠ Pairing schemes for HFB calculations: Results and discussions K. Bennaceur , IPNL/UCB Lyon-1 – CEA/ESNT T. Duguet, NSCL – MSU P. Bonche, CEA/SPhT • Zero range pairing: – density dependence – regularization • Regularization scheme and pairing at low density • Microscopic zero range pairing force along the Cr isotopic chaine • Conclusion ✑✖✕ ✑✘✗

  2. ✢ ☎ ✟ ☛ ✄ ☛ ✏ ✆ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ✠ ✒ ✟ ✝ ☎✆ � ☎ ✝ ✁ ✟ ✁✂ ✝ ✞✟ ✝ ☎✆ ✄ ✑ � � ✍ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✄ ✆ ✔ ☛ ✁✂ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✌ ✔ ☎ ✓ ✝ ☎✆ ✄ ✁✂ Pairing – Density dependence 110 Particle 100 drip lines 90 80 SLy4 ρ (volume) 70 60 Z or 50 20 SLy4 δρ (surface) 18 40 16 30 14 12 20 10 8 10 26 30 34 38 42 46 50 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 N 1.0 0.8 168 Sn with SLy4 ρ µ N → 0 v 2 ( eq ) µ N = − 0 . 608 MeV large density of 0.5 states around µ N � ∆ N � = 1 . 031 MeV 0.2 0.0 -60 -50 -40 -30 -20 -10 0 10 20 30 eq [MeV] ✑✖✕ ✑✘✗

  3. ✢ ✎ ✁✂ � ✒ ✑ ✟ ☛ ✄ ☛ ✏ ✆ ✞✟ ✌✍ ☎✆ ✟ ☛ ☞ ✡☛ ☎ ✠ ✟ ✝ ☎✆ � ☎ ✄ ✝ ✁ ✆ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✄ ✔ ✓ ✍ ☛ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✌ ✔ ☎ ✝ ✟ ✁✂ � ✝ ✞✟ ✝ ☎✆ ✄ ✁✂ Microscopic pairing Finite range (FR)and zero range (ZFR) � k |D ( k F , P, 0) | k ′ � = λv ( k ) h ( k F , P, 0) v ( k ′ ) → Density dependence: h ( k F , P, 0) Finite range Zero range approximation 7 C (k F ) = h (k F ,0,0) zr (k F ) C 6 n/2 => (5 terms) Fit in (k F ) n/2 => (2 terms) Fit in (k F ) 5 n => (3 terms) Fit in (ln k F ) n => (3 terms) Fit in (lnk F ) 4 C (k F ) 3 ∼ cste ∼ Surf. + Vol. 2 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -1 ) -1 ) k F (fm k F (fm h (low density) � = DDDI ✑✖✕ ✑✘✗

  4. ✢ ✄ ☛ ✌ ✔ ☎ ✓ ✝ ☎✆ ✁✂ ✎ � ✒ ✑ ✟ ☛ ✄ ☛ ✏ ✟ ✁ ✞✟ ☎ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ✠ ✔ ✟ ✄ ✆ ✔ ✍ ☛ ✟ ✂ ✆ ✎ ✌✍ ☎ ✄ ☎✆ ✝ ✞✟ ✝ ✁✂ ✟ ✁ ✝ � ✁✂ ☎✆ ✝ ✟ ✠ ☎ ✡☛ ☞ ☛ ✟ � Zero range effective interaction � γ � � � ρ ( r ) V pp eff ( r ) = t ′ 1 − η δ ( r ) 0 ρ 0 • η = 0 → “volume” pairing • η = 1 → “surface” pairing • η = 1 / 2 → “mixed” pairing • Divergence of E → cut-off E c DFT (V, S or M) pairing: mixed with E c = 60 MeV ( D obaczewski, F locard, T reiner, NPA ’84) ULB pairing: surface with E c = ± 5 MeV ✑✖✕ ✑✘✗

  5. ✢ ☛ ✓ ✝ ☎✆ ✄ ✁✂ � ✒ ✑ ✟ ✄ ✔ ☛ ✏ ✆ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ☎ ✌ ✟ ✟ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✄ ☛ ✆ ✔ ✍ ☛ ✟ ✂ ✔ ✁ ✎ ✟ ☎ ✠ ✝ � ☎✆ � ☎ ✝ ✁ ✟ ✁✂ ✝ ✞✟ ✝ ☎✆ ✄ ✁✂ Regularization Cf. A. Bulgac : nucl-th/0109083, nucl-th/0302007 1 • V pp ∝ δ ( r ) = ⇒ E p = + ∞ ⇐ = ˜ ρ ( r 1 , r 2 ) ∝ | r 1 − r 2 | r 1 → r 2 • Infinite matter ρ ( r 1 , r 2 ) ˜ − → + ∞ r 1 → r 2 m ∆ e ikF | r 1 − r 2 | = ρ reg ( r 1 , r 2 ) ˜ + 4 π � 2 | r 1 − r 2 | < + ∞ + ∞ • Nuclei ∆( r ) = t ′ ρ reg ( r ) ≡ t ′ 0 ˜ 0 , eff [ ρ ] ˜ ρ ( r ) = ⇒ more complex density dependence Regularized DFT pairing : “RDFT” (V, S or M) ✑✖✕ ✑✘✗

  6. ✢ ✒ ✔ ☎ ✓ ✝ ☎✆ ✄ ✁✂ � ✑ ☛ ✟ ☛ ✄ ☛ ✏ ✆ ✞✟ ✎ ✌✍ ✌ ✟ ☛ ✠ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✟ ✎ ✄ ✆ ✔ ✍ ☛ ✟ ✂ ✔ ✁ ✟ ☞ ✡☛ ✁ ✄ ☎✆ ✝ ✞✟ ✝ ✁✂ ✟ ✝ � ☎ � ☎✆ ✝ ✟ ✠ ☎ ✁✂ Link to an effective pairing interaction 1 S 0 • V ≡ V sep → ... Cf. Thomas(D. & L.)’s presentations ... ∆ m � ∆ i = − � i ¯ ı |T (0) | m ¯ m � 2(1 − ρ m ) ρ m 2 E m m ∆ m � = − � i ¯ ı |D (0) | m ¯ m � 2 ρ m 2 E m m cut-off → 2 v 2 V eff ( ρ q ) m “ZFR” pairing = lim α → 0 FR(range α ) K + E p < + ∞ , but K and E p diverge ✑✖✕ ✑✘✗

  7. ✢ ☎ ✟ ☛ ✄ ☛ ✏ ✆ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ✠ ✒ ✟ ✝ ☎✆ � ☎ ✝ ✁ ✟ ✁✂ ✝ ✞✟ ✝ ☎✆ ✄ ✑ � � ✍ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✄ ✆ ✔ ☛ ✁✂ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✌ ✔ ☎ ✓ ✝ ☎✆ ✄ ✁✂ Convergence 2000 40 E = -1017.862 MeV 20 1500 RDFT 0 1000 -20 500 RDFT E p = -11.798 MeV SLy5 -40 0 40 2000 DFT E p = -12.845 MeV 120 Sn 20 1500 E tot (E max ) - E tot (130 MeV) [keV] 0 E p (E max ) - E p (130 MeV) [keV] 1000 -20 500 E = -1018.356 MeV DFT -40 0 2000 40 E = -1019.470 MeV ZFR 20 1500 0 1000 ZFR -20 500 E p = -21.992 MeV -40 0 40 2000 E = -1018.968 MeV E p = -13.912 MeV 20 1500 0 1000 FR -20 FR 500 -40 0 10 30 50 70 90 110 130 10 30 50 70 90 110 130 E max [MeV] E max [MeV] ✑✖✕ ✑✘✗

  8. ✢ ✁✂ ✌ ✔ ☎ ✓ ✝ ☎✆ ✄ � ✟ ✒ ✑ ✟ ☛ ✄ ☛ ✏ ✆ ☛ ✎ ✎ ✠ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✟ ✁ ✄ ✆ ✔ ✍ ☛ ✟ ✂ ✔ ✞✟ ✌✍ ✟ ✝ ✄ ☎✆ ✝ ✞✟ ✝ ✁✂ ✟ ✁ ☎ � � ☎✆ ✝ ✟ ✠ ☎ ✡☛ ☞ ☛ ✁✂ Summary and recipes • FR → E max ∼ 30 MeV Forces with regularization: • ULB → E max ∼ E F + 5 MeV • DFTx → E max ∼ E c + 30 MeV ∼ 90 MeV (= E c if direct integration) • RDFTx → E max ∼ 60 MeV (staggering) • ZFR → E max ∼ 90 MeV � � � ∆ N � κ − � ∆ N � (5) � Strengths adjusted to minimize � for 120 Sn, 198 Pb and 212 Pb. ✑✖✕ ✑✘✗

  9. ✢ ✏ ☎✆ ✄ ✁✂ � ✒ ✑ ✟ ☛ ✄ ☛ ✆ ✓ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ☎ ✠ ✟ ✝ ☎ � ✄ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✆ ✔ ✔ ✍ ☛ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✌ ✝ ☎✆ ☎ � ✝ ✁ ✟ ✁✂ ✝ ✞✟ ✝ ☎✆ ✄ ✁✂ Computation time 80 FR 70 ZFR ULB 60 DFT 50 RDFT Time [s] 40 30 20 10 300 0 10 30 50 70 90 110 130 E max [fm] 250 FR ZFR ULB 200 DFT Time [s] RDFT 150 100 50 0 20 30 40 R box [fm] ✑✖✕ ✑✘✗

  10. ✢ ✂ � ✁✂ ✄ ☎✆ ✝ ✓ ☎ ✔ ✌ ☛ ✟ ✎ ✁ ✔ ✟ ✟ ✍ ✕ ✛✜ ✕ �✚ ✙ ✝ ☎ ☛ ✠ ✟ ✄ ✆ ✔ ✍ ✒ ✑ ☛ ✝ � ✁✂ ✄ ☎✆ ✝ ✞✟ ✝ ✁✂ ✟ ✁ ✝ ☎ � ☎✆ ✟ ✌✍ ✄ ☛ ✏ ✆ ✞✟ ✠ ✎ ✟ ☛ ☞ ✡☛ ☎ So... Microscopic regularizations: – require modifications of the codes (not too hard...) – Converge at rather high energy (60 to 90 MeV) Are they really useful ? Do they change the physics ? ✑✖✕ ✑✘✗

  11. ✢ ☛ ✝ ☎✆ ✄ ✁✂ � ✒ ✑ ✟ ☛ ✄ ✏ ☎ ✆ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ☎ ✠ ✓ ✔ ☎✆ ✄ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✆ ✌ ✔ ✍ ☛ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✟ ✝ � ✝ ✁ � � ✁✂ ✄ ☎✆ ✞✟ ✂ ✝ ✁✂ ✟ ✁ ✝ ☎ � Effect of the different regularization schemes ULB , DFT ( V , S , M ), ZFR → different density dependences... zr (k F ) C n/2 => (2 terms) Fit in (k F ) n => (3 terms) Fit in (lnk F ) ZFR very strong at low density 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -1 ) k F (fm γ ρ ( r ) use of the same density dependence V pp eff ≡ t ′ 1 − η δ ( r ) 0 ρ 0 for each regularization scheme: ULB = cut off (narrow window) DFT = cut off (wide window) “R” = Bulgac & Yu. “2 v 2 ” = same as ZFR γ < 1 ⇒ pairing enhancement at low density ✑✖✕ ✑✘✗

  12. ✢ ✄ ✝ ☎✆ ✄ ✁✂ � ✒ ✑ ✟ ☛ ☛ ☎ ✏ ✆ ✞✟ ✎ ✌✍ ✟ ☛ ☞ ✡☛ ☎ ✓ ✔ ✟ ✄ ✕ ✛✜ ✕ �✚ ✙ ✝ ✍ ☎ ✠ ✟ ✆ ✌ ✔ ✍ ☛ ✟ ✂ ✔ ✁ ✎ ✟ ☛ ✠ ✝ ☎✆ � � ☎ ✝ ✁ ✟ ✁✂ ✝ ✞✟ ✝ ☎✆ ✄ ✁✂ Density dependences – η = 1 / 2 1200 800 f[ (r)] [MeV] 600 1000 400 f( ) [MeV] 800 In a nucleus 200 0 600 0 5 10 r [fm] 400 = 1 f ZFR = 1/2 200 = 1/4 = 1/6 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 [fm -3 ] η = 1 / 2 (mixed pairing): → the main part of the gap in nuclei comes from the inside → the strength can not be very strong at low density (surface) ✑✖✕ ✑✘✗

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend