pacs cs collaboration member s aoki n ishii n ishizuka d
play

PACS-CS Collaboration Member S. Aoki, N. Ishii, N. Ishizuka, D. - PowerPoint PPT Presentation

PACS-CS Ref: PRD79.034503 (2009) ( ) for PACS-CS Collaboration


  1. PACS-CS の取り組み Ref: PRD79.034503 (2009) 浮田 尚哉 ( 筑波大学計算科学研究センター ) for PACS-CS Collaboration 「ストレンジを含むクォーク多体系分野の理論的将来を考える」研究会 2009年2月27-28日 @ KKR ホテル熱海(熱海市)

  2. 1 PACS-CS Collaboration Member S. Aoki, N. Ishii, N. Ishizuka, D. Kadoh, K. Kanaya, Y. Kuramashi, Y. Namekawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, T. Yamazaki (University of Tsukuba) K.-I. Ishikawa, M. Okawa, Y. Shimizu (Hiroshima Univ.) T. Izubuchi (BNL, Kanazawa Univ.)

  3. Introduction 2 PACS-CS Project: N f = 2 + 1 Simulations at the Physical Point on large enough lattices • O ( a ) improved Wilson quark action with nonperturbative c SW (CP-PACS and JLQCD Collaborations, 2006) • Iwasaki gauge action (Iwasaki, 1983) • β = 1 . 90 ( a = 0 . 0907(13) fm) • 32 3 × 64 lattice ( V ≈ (2 . 9fm) 3 ) • m π = 156 ∼ 702 MeV • m π L � 2 . 3 u-d quarks : Domain-Decomposed HMC (DDHMC) algorithm (L¨ uscher, 2003) + Hasenbusch trick (Hasenbusch, 2001; Hasenbusch, Jansen, 2003) + · · · s quark : UV-filterd Polynomial HMC (UVPHMC) algorithm (JLQCD Collaborations, 2002) on the PACS-CS ( 2560nodes , 14 . 3TFLOPS ) and the T2K (95+140+61 TFLOPS ).

  4. Introduction 3 Comparison with other groups for N f = 2 + 1 simulations: m min Collaboration Dirac op. m π (MeV) L a (fm) π � 156 0.09 [ M Ω ] PACS-CS clover 2.3 BMW(’08) stout clover � 190 4 0.065-0.125 [ M Ξ ] MILC(’04,’07) staggered � 240 4 0.06-0.18 [ F π ] NPLQCD(’07) staggered+DW � 290 3.7 0.13 [ r 0 ] RBC/UKQCD(’08) DW � 330 4.6 0.1 [ M Ω ] JLQCD/TWQCD(’08) Overlap � 310 2.8 0.108 [ r 0 ]

  5. Introduction 4 The light hadron spectrum of QCD at a = 0 . 09 fm 2 meson octet baryon decuplet baryon ∗ Ω 1.5 ∗ Ξ Σ Ξ m[GeV] ∆ Σ Λ 1 * φ N K ρ 0.5 K chpt fse ( m π ,m K ,m Ω -input ) π 0

  6. Introduction 5 The light hadron spectrum of QCD : PACS-CS (a=0.09fm) and BMW ( a → 0) 2 meson octet baryon decuplet baryon ∗ Ω 1.5 ∗ Ξ Σ Ξ m[GeV] ∆ Σ Λ 1 * φ N K ρ 0.5 PACS-CS ( m π ,m K ,m Ω -input ) K BMW (m π ,m K ,m Ξ -input) π 0

  7. 6 Plan to this talk : • Introduction • Algorithm for N f = 2 part : DDHMC, Hasenbusch trick, Solver • Simulation Parameters and Data Set • Run Status • ChPT Analysis : SU(2) and SU(3) ChPT up to NLO • The Physical Point Simulation • Conclusion

  8. Algorithm for N f = 2 + 1 part DDHMC, Hasenbusch trick, Solver

  9. DDHMC Algorithm (L¨ uscher, 2003) 7 Key to reduce the cost : Domain Decomposition & Multi Time Step Integrator • Domain Decomposition splitting lattice sites into even & odd domains as a preconditionor for N f = 2 O(a)-improved Wilson-Dirac op. domain size we use is 8 4 Even Odd Even „ D EE „ D EE « « „ « D − 1 D EO 0 1 EE D EO D = = D − 1 D OE D OO 0 D OO OO D OE 1 | det D | 2 = | det D EE | 2 | det D OO | 2 | det(1 − D − 1 EE D EO D − 1 ) | 2 OO D OE | {z } | {z } UV part ≡ DIR : IR part

  10. 8 After this preconditioning, we have a partition function, Z D EE | 2 | det ¯ e − SG | det(1 + T ) | 2 | det ¯ D OO | 2 | 2 Z = | det D IR | {z } | {z } | {z } U Gauge part UV part IR part Z  ff − 1 2Tr( P 2 ) − S ′ = exp G [ U ] − S UV [ U, φ ] − S IR [ U, χ ] . P,U,φ,χ Molecular dynamics equation : set random φ, χ ˙ U = P , ˙ P = F G [ U ] + F UV [ U, φ ] + F IR [ U, χ ] • Multi time step integrator for Gauge, UV and IR parts (Sexton and Weingarten, 1992) Relative magnitudes of force terms, F G , F IR , F UV : || F G || : || F UV || : || F IR || ≈ 16 : 4 : 1 . We choose the associated step sizes, δτ G , δτ UV , δτ IR such that δτ G || F G || ≈ δτ UV || F UV || ≈ δτ IR || F IR || , δτ G = τ/N 0 N 1 N 2 , δτ UV = τ/N 1 N 2 , δτ IR = τ/N 2 , N 0 = N 1 = 4 .

  11. 9 For strange quark, we employ UVPHMC algorithm (CP-PACS and JLQCD Collaborations, 2006) where the domain decomposition is not used. ∥ F s ∥ ≈ ∥ F IR ∥ ⇒ δτ s = δτ IR . ⇓ ⃝ m π � 296 MeV : DDHMC + UVPHMC algorithm works stable. × m π = 156 MeV : large fluctuation of ∥ F IR ∥ , slow to keep simulation stable. • Hasenbusch trick (Hasenbusch, 2001; Hasenbusch, Jansen, 2003) IR = D IR ( κ → κ ′ = ρκ ) , eg. ρ = 0 . 9995 to shift to the heavier mass D ′ ˛ «˛ „ D IR 2 | det D IR | 2 = | det D ′ ˛ ˛ IR | ˛ det ⇒ F IR ′ , F IR/IR ′ ˛ ˛ D ′ ˛ IR Step sizes, δτ G , δτ UV , δτ IR ′ , δ IR/IR ′ , are controlled by ( N 0 , N 1 , N 2 , N 3 ) . N 0 = N 1 = 4 , N 2 and N 3 are chosen to reduce the fluctuation of ∥ F IR ′ ∥ , ∥ F IR/IR ′ ∥ .

  12. Solver for m π � 296 MeV : Dx = b 10 For DDHMC algorithm ( m π � 296MeV), • IR solver : SAP(single prec.) preconditioned GCR(double prec.) (L¨ uscher, 2004) • UV solver : SSOR(single prec.) preconditioned GCR(double prec.) • Stopping condition : | Dx − b | / | b | ≤ 10 − 14 for H, 10 − 9 for F

  13. Solver for m π = 156 MeV : Dx = b 11 For MPDDHMC algorithm ( m π = 156MeV), ⋆ Chronological guess for IR part (Brower, Ivanenko, Levi, Orginos, 1997) ⋆ nested BiCGStab solver for IR and UV part : • Outer solver(double prec.) : Solve Dx = b with preconditioner M ≈ D − 1 with strict stopping condition 10 − 14 for F • Inner solver(single prec.) : Solve M ≈ D − 1 with appropriate precoditioner “ “ tol outer , 10 − 6 ” , 10 − 3 ” err outer with automatic tolerance control tol inner = min max ⋆ Deflation technique (Morgan, Wilcox, 2002; L¨ uscher, 2007) • inner BiCGStab stagnant → GCRO-DR (Parks et al, 2006) (Generalized Conjugate Residual with implicit inner Orthogonalization and Deflated Restarting)

  14. Simulation Cost 12 10.0 N f =2+1 8.0 100 configs Tflops years a=0.1fm 6.0 L=3fm ( m π /m ρ ) − 3 Cost ∝ for HMC , 4.0 ( m π /m ρ ) − 2 ∝ for MPDDHMC . HMC physical pt κ ud =0.13770 2.0 κ ud =0.13781 (Ukawa, 2002; PACS-CS Collaboration, 2007) 0.0 0 0.2 0.4 0.6 0.8 1 m π /m ρ Physical Point simulations require HMC : O (100) Tflops computer , MPDDHMC : O (10) Tflops computer.

  15. Simulation Parameters and Data Set

  16. Simulation Parameters and Data Set 13 κ ud 0.13700 0.13727 0.13754 0.13754 0.13770 0.13781 0.137785 κ s 0.13640 0.13640 0.13640 0.13660 0.13640 0.13640 0.13660 Algorithm DDHMC DDHMC DDHMC DDHMC DDHMC MPDDHMC MPDDHMC τ 0.5 0.5 0.5 0.5 0.25 0.25 0.25 (4,4,10) (4,4,14) (4,4,20) (4,4,28) (4,4,16) (4,4,4,6) (4,4,2,4,4) ( N 0 ,N 1 ,N 2 ,N 3 ,N 4) (4,4,6,6) ρ 1 − − − − − 0.9995 0.9995 ρ 2 − − − − − − 0.9990 N poly 180 180 180 220 180 200 220 Replay on on on on on off off MD time 2000 2000 2250 2000 2000 1400 1000 m ud [ MeV ] 67 45 24 21 12 3.5 3.6 m π [ MeV ] 702 570 411 385 296 156 162 m π /m ρ 0.64 0.57 0.46 0.45 0.35 0.20 0.23 CPU time [h]/ τ 0.29 0.44 1.3 1.1 2.7 7.1 6.0 shifted hopping parameter κ ′ ud = ρ 1 κ ud ∼ 0 . 1377

  17. Run Status dH and Force histories, Effective masses

  18. dH History 14 m π = 570MeV m π = 296MeV m π = 156MeV 5 5 5 4 4 4 3 3 3 2 2 2 dH dH dH 1 1 1 0 0 0 -1 -1 -1 -2 -2 -2 1000 1500 2000 2500 1000 1500 2000 2500 500 550 600 650 700 750 800 850 900 τ τ traj. acc(HMC)=0.87 acc(HMC)=0.84 acc(HMC)=0.88 replay trick ∼ 0 . 1% replay trick ∼ 3% rate( | dH | > 2) ∼ 3%

  19. Force History 15 m π = 570MeV m π = 296MeV m π = 156MeV 10 10 10 F0 F1 F2 F0 1 F3 F1 F2 1 1 0.1 0.01 0.1 0.1 0.001 0 5000 10000 15000 20000 4e+05 4.5e+05 5e+05 5.5e+05 6e+05 6.5e+05 7e+05 1e+06 1.2e+06 1.4e+06 1.6e+06 F 0 : Gauge + clv F 0 : Gauge + clv F 1 : UV F 1 : UV F 2 : IR ′ F 2 : IR F 3 : IR/IR ′

  20. Effective mass : Meson 16 k ud = 0 . 13727 k ud = 0 . 13770 k ud = 0 . 13781 m π = 570MeV m π = 296MeV m π = 156MeV φ φ φ 0.5 0.5 * * * K K K 0.5 ρ ρ ρ 0.4 0.4 m Meson m Meson m Meson η η η 0.4 s s s 0.3 0.3 K K K 0.2 0.2 0.3 π π π 0.1 0.1 0.2 0 10 20 30 0 10 20 30 0 10 20 30 Nt Nt Nt Fit Range [ t min , t max ] : Pseudoscalar [13 − 30] , Vector [10 − 20]

  21. Effective mass : Baryon 17 k ud = 0 . 13727 k ud = 0 . 13770 k ud = 0 . 13781 m π = 570MeV m π = 296MeV m π = 156MeV 0.9 0.9 0.95 0.85 0.85 Ω Ω Ω 0.9 0.8 0.8 * * * Ξ Ξ Ξ 0.85 0.75 0.75 * * * 0.7 Σ 0.8 Σ Σ 0.7 m B m B m B ∆ 0.65 ∆ ∆ 0.65 0.75 Ξ Ξ Ξ 0.6 0.6 Σ 0.7 Σ Σ 0.55 Λ 0.55 Λ Λ 0.5 0.65 0.5 N N N 0.45 0.6 0.45 0.4 0 10 20 5 15 25 0 5 10 15 20 25 0 5 10 15 20 25 Nt Nt Nt Fit Range [ t min , t max ] : Decuplet [13 − 30] , Octet [10 − 20]

  22. Edinburgh Plot 18 1.5 1.4 1.3 m N / m ρ 1.2 κ s =0.13640 κ s =0.13660 Phisical Point 1.1 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 m π / m ρ

  23. m 2 π /m ud , f K /f π vs m ud 19 4.2 1.3 2 /m AWI m π f K /f π ud 4.0 1.2 CP-PACS/JLQCD κ s =0.13640 PACS-CS κ s =0.13640 3.8 1.1 PACS-CS κ s =0.13660 Experiment 3.6 1.0 CP-PACS/JLQCD κ s =0.13640 PACS-CS κ s =0.13640 PACS-CS κ s =0.13660 3.4 0.9 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 AWI AWI m m ud ud

  24. SU(3) ChPT analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend