p erturbative results without diagrams r rosenfelder paul
play

P erturbative Results Without Diagrams R. Rosenfelder - PowerPoint PPT Presentation

P erturbative Results Without Diagrams R. Rosenfelder Paul-Scherrer-Institut, Villigen PSI (Switzerland) PSI, 31 July 2008 arXiv:0805.4525 [hep-th] , submitted to Phys. Rev. E (Computational Physics) 1. Introduction 2. A new method (applied to


  1. P erturbative Results Without Diagrams R. Rosenfelder Paul-Scherrer-Institut, Villigen PSI (Switzerland) PSI, 31 July 2008 arXiv:0805.4525 [hep-th] , submitted to Phys. Rev. E (Computational Physics) 1. Introduction 2. A new method (applied to the polaron g.s. energy) 3. Numerical procedures and results 4. Summary 5. Outlook: application to worldline QED

  2. R. Rosenfelder (PSI) : PT without diagrams 2 1. Introduction Usually in perturbative calculation in Quantum (Field) Theory the number of diagrams grows factorially with the order Example : number of diagrams for g-2 of the electron in QED (see Itzykson & Zuber p. 466, 467) � � 4 z (1 − S ) 1 + K ′ 0 ( z ) , z = − 1 Γ( α ) = , S = − 2 z S 3 K 0 ( z ) 4 α expand in powers of α = 1 / 137 . 036 Γ( α ) = 1 + α + 7 α 2 + 72 α 3 + 891 α 4 + 12672 α 5 + 202770 α 6 + . . . = ⇒ Consequence : huge cancellations between individual diagrams heroic efforts needed for higher-order calculations Schwinger (1948), Petermann, Sommerfield (1957) Laporta & Remiddi (1996), Kinoshita et al. (1990-2005) Need (more modestly: would be nice to have) new methods !

  3. R. Rosenfelder (PSI) : PT without diagrams 3 2. A new method (applied to the polaron g. s. energy) Take as simple (but nontrivial) example the polaron problem – a non-relativistic field theory polaron = electron slowly moving through polarizable crystal model Hamiltonian H. Fr¨ ohlich (1954) a k + √ α � � 1 1 � � p 2 + x + h.c. a † a † k e − i k · ˆ ˆ 2ˆ ˆ k ˆ ˆ H ∼ | k | k k α : dimensionless electron-phonon coupling constant Ground-state energy of polaron: � e n α n E 0 : = , e 1 = − 1 n =1 = − 0 . 01591962 (1959) , e 3 = − 0 . 00080607 Smondyrev (1986) e 2

  4. R. Rosenfelder (PSI) : PT without diagrams 4 In field-theoretic language: have to evaluate self-energy diagrams with more and more loops Long live the PATH INTEGRAL : phonons can be integrated out exactly! Feynman (1955) � β →∞ D 3 x e − S eff e − βE 0 Z ( β ) = − → where for large β � β � β � dt 1 d 3 k 1 x 2 + α dt 1 dt 2 e −| t 1 − t 2 | ⇒ S eff [ x ] ∼ 2 ˙ k 2 exp [ i k · ( x ( t 1 ) − x ( t 2 ))] = : S 0 + S 1 0 0

  5. R. Rosenfelder (PSI) : PT without diagrams 5 Employ cumulant expansion of partition function �� � ( − ) n Z ( β ) = Z 0 exp n ! λ n ( β ) n =1 where λ n ( β ) are the cumulants w.r.t. S 1 m n ( β ) ≡ � S 1 n � ∝ α n Recursion relation with the moments n − 1 � n � � λ n +1 = m n +1 − λ k +1 m n − k k k =0 λ 1 = m 1 m 2 − m 2 λ 2 = 1 m 3 − 3 m 2 m 1 + 2 m 3 λ 3 = 1 m 4 − 4 m 3 m 1 − 3 m 2 2 + 12 m 2 m 2 1 − 6 m 4 = λ 4 1 m 5 − 5 m 4 m 1 − 10 m 3 m 2 + 20 m 3 m 2 1 + 30 m 2 2 m 1 − 60 m 2 m 3 1 + 24 m 5 λ 5 = 1 . . . ( − ) n +1 1 Note : λ n ( β ) ∝ α n = ⇒ e n = lim λ n ( β ) α n n ! β β →∞

  6. R. Rosenfelder (PSI) : PT without diagrams 6 The path integral for the moments � D 3 x S 1 n e − S 0 [ x ] , = m 0 = 1 m n C can be evaluated exactly. Write Coulomb propagator as � ∞ � � k 2 = 1 1 − 1 2 k 2 u du exp 2 0 = ⇒ all momentum integrations can be performed and one obtains � � �� β � t m � ∞ n n � α n � � ( − ) n dt ′ ( t m − t ′ = exp − m ) m n dt m du m m (4 π ) n/ 2 0 0 0 m =1 m =1 · � det A � �� − 3 / 2 t 1 . . . t n , t ′ 1 . . . t ′ n ; u 1 . . . u n with ( n × n )- matrix A � � 1 −| t i − t j | + | t i − t ′ j | + | t ′ i − t j | − | t ′ i − t ′ = j | + u i δ ij A ij 2 ↑ ↑ non-analytic analytic dependence

  7. R. Rosenfelder (PSI) : PT without diagrams 7 Define A ij = : a ij + u i δ ij Diagonal parts: a ii = t i − t ′ i ≡ σ i Non-diagonal matrix elements : 1 � j ) � := t i + t ′ i − ( t j + t ′ S 2 1 r := 2 ( σ i − σ j ) 1 s := 2 ( σ i + σ j )

  8. R. Rosenfelder (PSI) : PT without diagrams 8 3. Numerical procedures and results For m n ( β ) ⇒ λ n ( β ) one has to do a 3n -dimensional integral over t i , t ′ i , u i Two u i -integrations can be done analytically ———————————————————————— � ∞ 2 du n det − 3 / 2 A (1 , 2 , . . . , n ) = n � A n det n A ( u n = 0) 0 arcsin √ x HF � ∞ � ∞ 4 du n det − 3 / 2 du n − 1 A (1 , 2 , . . . , n ) = √ x HF n � A n − 1 ,n A n − 1 A n 0 0 where A n , A n − 1 , A n − 1 ,n are principal minors of the determinant det n A ≡ A 0 ≤ x HF : = 1 − A n − 1 ,n A ≤ 1 A n − 1 A n because A ij is a positive semi-definite matrix = ⇒ Hadamard-Fischer inequality A n − 1 A n ≥ A n − 1 ,n A ———————————————————————— After performing u n , u n − 1 -integrations analytically = ⇒ ( 3n − 2 )-dimensional integral left

  9. R. Rosenfelder (PSI) : PT without diagrams 9 Useful trick : calculate directly ∂λ n ∂β = ⇒ ( 3n − 3 )-dimensional integral ! Further advantage: asymptotic behaviour (thus extrapolation to β → ∞ ) is much improved: � β →∞ e n ( β ) : = ( − ) n +1 � ∂λ n ∂ → e n − a n √ β e − β (?) + . . . × − . . . = β · e n + const − α n n ! ∂β ∂β Exponential convergence to e n : analytically proved for n = 1 , 2 numerically for n = 3 : assume e n ( β ) → e n − a n β − κ n e − β fit to Monte-Carlo data gives κ 3 = 0 . 55(3) Assume it also for n > 3 ...

  10. R. Rosenfelder (PSI) : PT without diagrams 10 Numerical evaluation: mapping to hypercube [0 , 1] , then: Monte-Carlo integration with VEGAS program or routines from the CUBA library Note : Monte-Carlo integration can handle non-analytic, even discontinous integrands

  11. R. Rosenfelder (PSI) : PT without diagrams 11 check n = 3 (6-dimensional integral): analytical: e 3 = − 0 . 80607005 · 10 − 3

  12. R. Rosenfelder (PSI) : PT without diagrams 12 but for n = 4 convergence is slow with number of function calls: solution: perform the ( n − 2) remaining u i -integrations by deterministic integration routine. Very efficient: tanh-sinh-method !

  13. R. Rosenfelder (PSI) : PT without diagrams 13 − → Transformation x = g ( t ) = tanh ( sinh t ) t ∈ [ −∞ , + ∞ ] cosh t g ′ ( t ) = cosh 2 (sinh t ) Euler − MacLaurin = ⇒ � +1 � + ∞ k =+ ∞ � dx f ( x ) = dt g ′ ( t ) f ( g ( t )) ≈ h w k f ( x k ) − 1 −∞ k = −∞ with x k = g ( kh ) , w k = g ′ ( kh ) w k double exponentially decreasing for large | k |

  14. R. Rosenfelder (PSI) : PT without diagrams 14 now for n = 4:

  15. R. Rosenfelder (PSI) : PT without diagrams 15 and also n = 5 (evaluation of (9+3)-dim. integral) is within reach: Here tanh-sinh-integration seems to be slightly better than Gauss-Legendre

  16. R. Rosenfelder (PSI) : PT without diagrams 16

  17. R. Rosenfelder (PSI) : PT without diagrams 17 4. Summary • Two additional perturbative coefficients e 4 , e 5 for the polaron g.s. energy have been determined by a new (mostly) numerical method. This amounts to performing a 4-loop and 5-loop calculation in Quantum Field Theory • Method is based on a combination of Monte-Carlo integration techniques and deter- ministic quadrature rules for finite β (temperature) and on judicious extrapolation to β → ∞ (zero temperature). Reproduces Smondyrev’s coefficient e 3 with high accuracy • Cancellation in n th order not among many individual diagrams but among much fewer terms in the integrand of the (3 n − 3)-dimensional integral • Increased computational power would allow to improve accuracy for e 4 , e 5 and even e 6 seems accessible • Application to g-2 of the electron under investigation (worldline representation of QED). Challenge: renormalization !?

  18. R. Rosenfelder (PSI) : PT without diagrams 18 5. Outlook: application to worldline QED Generating functional � � � D ¯ i S [ ¯ ψ, ψ, A ] + ( ¯ Z [¯ η, η, j ] = ψ D ψ D A exp ψ, η ) + (¯ η, ψ ) + ( j, A ) � � � � S [ ¯ ¯ ψ, ψ, A ] = γ · ( i∂ − eA ) − M 0 + S 0 [ A ] ψ, ψ � �� � ≡ Π 2-point function: � � � � � � � 1 � ψ (0) � e iS 0 [ A ] Det ( γ · Π − M 0 ) � � ψ ( x ) ¯ ∼ D A x 0 � � γ · Π − M 0 � �� � � � � �� � ↓ ↑ = const. in quenched approx. Schwinger trick ↓ � ∞ � � � dχ exp � i � � T − i ( γ · Π + M 0 ) χ � ( γ · Π) 2 − M 2 ∼ dT dχ = 0 , dχ χ = 1 0 0 Berezin

  19. R. Rosenfelder (PSI) : PT without diagrams 19 result in momentum space : ( Alexandrou, RR & Schreiber, PR A 59 (1999)) � ∞ � � � � � D 4 ζ e i S [ x,ζ,χ,A ] � � dχ e − i ( M 2 0 T + M 0 χ ) d 4 x e − ip · x D A e iS 0 [ A ] D 4 x G 2 ( p ) ∼ dT � Γ → γ 0 orbital trajectory : x (0) = 0 , x ( T ) = x spin trajectory : ζ (0) + ζ ( T ) = Γ � T � � − 1 x 2 + iζ · ˙ S [ x, ζ, χ, A ] ∼ dt 2 ˙ ζ + ˙ x · ζ χ − e ˙ x · A − ie ζ · F · ζ 0 ↑ ↑ ↑ spin-orbit convection spin current Photon field A can be integrated out exactly = ⇒ effective action

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend