oxygenation and tumour biology
play

Oxygenation and (Tumour) Biology Cell Models & 3D culture - PDF document

11/15/2017 Biological Roles of O2 and principles of quenched-phosphorescence O 2 sensing Demonstration in in vivo studies Demonstration in ex-vivo models 3D tissue models and physiological studies in Dmitri B. Papkovsky vitro


  1. 11/15/2017  Biological Roles of O2 and principles of quenched-phosphorescence O 2 sensing  Demonstration in in vivo studies  Demonstration in ex-vivo models  3D tissue models and physiological studies in Dmitri B. Papkovsky vitro School of Biochemistry and Cell Biology, University College Cork, Ireland Oxygenation and Physiological Relevance Oxygenation and (Tumour) Biology Cell Models & 3D culture Tumour Metabolism Therapeutic Efficacy 1.E-07 8.E-08 Cell Culture Glycolytic Flux ([H+] /h) ~18.6% 6.E-08 O 2 % Anoxia ‘ Normoxia ’ ‘Hypoxia’ Oxygen 0 5 10 15 20 4.E-08 Inspired air 2.E-08 ~1% O 2 ~7% O 2 ~21% O 2 Kidney Liver 0.E+00 Muscle iO2 2 = 17% 7% iO2 2 = 0.5% ‘Hypoxia’ ‘ Normoxia ’ Hyper oxic McKeown SR. Defining normoxia, physoxia and hypoxia ‘ Physoxia’ in tumours — implicationsfor treatmentresponse. Br J Radiol 2014;87:20130676 Q) Is culturing cells at 18.6% O 2 physiologically relevant ? A) No. It is Hyperoxic w.r.t. to most tissues. • Therapeutic Efficacy ROS / Metabolism / Signalling? • Delineating hypoxia signalling (HIF stabilisation) • Ischemia Reperfusion Modelling 1

  2. 11/15/2017 In situ [O [O 2 ] determines s cell physi siology !! Zhdanov et al - Integr. Biol. 2010, 2:443 S* S* Analyt ytical Appr proach Features T* T* In vivo imaging with intravascular Systemic administration in live O 2 probes animals (IV): High doses, rapid clearance • phosphorescence h n (~3h), once-off fluorescence O 2 • Poorly suitable for in vitro use Bulk tissue is dark • Complex synthesis, costs • ns m s Intracellular O 2 probes & micro- Local administration in tissue: low doses, controlled location imaging • long retention time (many days) • Low toxicity Relationship : [O [O 2 ] = (t • (t o /t -1)/ K q Non-chemical , reversible • Micro & macro imaging, • Miscellaneous: O 2 probes Various technologies, often 2D or Quantitative, real-time, stable • Imaging systems, point measurements, semi- quantitative Optical, minimally invasive • 2

  3. 11/15/2017 l exc l em t o ( m s) Probe name, composition K SV Ru(bpy) 2 (pic) 2+ - CPP conjugate 458 nm 610 nm 775 ns ND PtCP - CPP conjugates 390 nm 650 nm 50-70 m s 0.006 mM -1 Ir-BTP coumarin C343 conjugate 620, 680 nm 405 nm 5.6 m s 0.064 mmHg -1 Small molecules 480 nm (ref) • IrOEP – CPP complexes 386 654 58-69 m s 0.074 mM -1 PtTFPP Pt-Glc conjugate 395 650 57 m s 0.03 mM -1 Bioconjugates, e.g. peptides • PdTCBP-HiLyte680 dendrimer in PAAG NPs modified 442, 632 nm 790 nm (O 2 ) Not reported 0.034 mM -1 with TAT peptide (30-50 nm) 678 nm (ref) 699 nm (ref) (250 m s for G2) [Ru(dpp(SO 3 Na) 2 ) 3 ]Cl 2 in PAA NPs (45 nm) 454 nm 608 nm 3.88-4.06 m s ND PtTFPP in RL100 polymer (35 nm NPs) 395 nm 650 nm 69.1 m s 0.04 mM -1 PtTFPP-naphtalimide dye in PS NPs (410-430 nm) 395 nm 650 nm ND ND Polymeric NPs (by inclusion) • 490 nm (ref) PtTFPP and PFO in RL100 NPs (70 nm) 405 nm - 1P 650 nm 66 m s 0.041 mM -1 760 nm – 2P 430 nm (ref) Polymeric NPs (by conjugation) • [Ru(dpp) 3 ](TMSPS) 2 in amino modified PS NPs (121 488 – 1P 630 nm ND ~0.8? nm) 830 nm – 2P PtTBP in RL100 NPs 440, 614 nm 760 nm 57 m s ~0.02 mM -1 PtTFPP in PS NPs (50 nm) 395 650 61 m s ND PtTFPP and PFO in acrylic polymer NPs (95 nm). 405 – 1P 650 nm 68 m s 0.086 mM -1 Multi-functional NP composites • 760 – 2P 430 nm (ref) 630 nm WPF-Ir4 and WPF-Ir8 NPs (19 nm). 405 nm 0.6 m s 0.006 mmHg ? 450 nm (ref) [Ru(dpp) 3 ] 2+ Cl 2 and NaYF 4 :Yb/Tm@NaYF 4 in 980 nm – UC 613 nm ns ND mesoporous silica NP (50 nm) 477 nm (ref) PtTFPP in PS-silane hybrid NPs (77 nm) 395 605 nm M s ND NanO2 MM2 MM2 600 400 500 Intensity, a.u. 400 300 300 200 200 100 100 0 0 Prof. f. Sergey Borisov sov, , Graz, , Austria 300 350 400 450 500 550 600 650 700 300 350 400 450 500 550 600 650 700 Wavelength, nm Wavelength, nm Biocompatible polymer • Average size 35-50 nm • Z potential +45mV • Stable, bright, low toxicity • Detection Modes: Dmitriev ev RI et al . – Adv . . Funct . Mater er 2012 Fercher er A. et al – ACS Nano, o, 2011 3

  4. 11/15/2017 Conjugated Polymer NPs 6 1.2x10 pO 2 , kPa (a) Luminescence Intensity, a.u. 6 1.0x10 0 5 0.98 8.0x10 Hydrophilic, water-soluble, neutral • 1.96 6.0x10 5 3.92 5 4.0x10 7.82 11.74 5 2.0x10 Efficient cell and tissue penetration • 19.56 0.0 400 500 600 700 Wavelength, nm Stable calibration • pO 2 , kPa 4x10 5 Luminescence (b) Intensity, a.u. 0 5 3x10 0.98 High photostability, low toxicity • 1.96 5 2x10 3.92 7.82 5 1x10 11.74 Moderate brightness • 19.56 0 500 600 700 800 Wavelength, nm Advantages: (c) SII-0.1 + 4 + /0.05 - Enhanced brightness - up to 10-fold, 1P, 2P SI-0.15 • 3 Tunable spectra, surface charge, cell R 0 /R • Pt-Glc structure specificity 2 Improved stability, tissue staining and • 1 penetration 0 5 10 15 20 pO 2 , kPa Dmitriev ev RI et al . – Biom omater er. Sci., 2014 Dmitriev ev RI et al . – ACS Nano, o, 2015  Procedure: Anaesthesia, surgery ◦ Probe/Sensor application ◦ Mounting cranial window ◦ Commercial Intensity based imager ◦ ◦ Sacrificing animal 4

  5. 11/15/2017  VSD - Cell depolarisation ◦ fast, localised response - ~50 ms  O 2 Probe - tissue oxygenation, metabolism, hemodynamics ◦ Delayed, bi-phasic response ◦ Affects larger area ◦ Resembles BOLD-MRI, fNIRS signals Tsytsarev ev et al – J. Neuros osci Meth, 2013, Ex-Vivo Tissue: Experimental procedure  Distal colon Euthanasia supercontinuum ps laser  Urinary bladder Fianium, 400-650 nm, 4W Tissue excision Axio Examiner microscope (Zeiss)  Carotid artery & mounting DCS-120 Confocal FLIM (B&H) Pt-Glc Pins Pins 1-3 h at 37 o C Stimulations Pins Pins Pins Pins Pt-Glc 5

  6. 11/15/2017 Occluded Carotid Artery Oxygenation Control carotid artery 6 weeks after ligation iO 2 [ m M] 180 0 • Bright staining of the tunica intima layer • Dramatic effect of ligation on tissue oxygenation Zhdanov ov AV et al . – CMLS , 2016 KO WT WT KO G H I O 2 levels in the samples [ m M] 80 Control 105 70 DSS OCR [nM/min × mg protein] 1.4 S 1 60 1.3 Normalised OCR [%] 50 p = 0.116 1.2 100 40 1.1 30 1 iO 2 [ m M] S 2 0 135 95 20 0.9 Prominent diff fference ces in ROS S generation, , but 10 0.8 marginal diff fference ces s in tiss ssue O 2 levels ! 0 0.7 90 0 10 20 30 40 50 60 Control DSS O2 4 3.5 3 2.5 2 1.5 1 0.5 0 0 50 100 TOP MIDDLE BOTTOM 6

  7. 11/15/2017 Detailed Analysis - Group comparison Non-parametric Mann-Whitney U-test Chart Title 125 60 Line 1 Pt-Glc intensity 100 Line 2 40 75 20 iO 2 [microM] 0 50 Cell border 60 25 40 20 0 50 40 30 20 10 0 0 iO 2 0 100 200 300 Line 2 aver aver Distance [micrometres] m m +/ +/- SEM values for 25%, 50% and d 75% quartiles show the Line 1 diffe ference in actual O 2 levels 65 O 2 [ micro M] 5 Pircalabior oru G et al . – Cell Host Microb obe. 2016,19:651. Calculated HIF prolyl hydroxylase 2 activities iO 2 [ m M] v [% V max ] 5-10 2-3.8 10-15 3.8-5.7 Resting FCCP / EGTA AntA (80 min) 15-20 5.7-7.4 20-30 7.4-10.7 30-40 10.7-13.8 40-50 13.8-16.7 Putative O 2 [ m M] 85 5 PHD2 activity, v [% V max ] 12-15 m M O 2 10-13 m M O 2 4.6-5.7 % V max 3.8-4.9 % V max 100 O 2 [ m M] 0 40 m M O 2 13.8 % V max Relative LT frequency [ *10 5 ] 9 160 Resting n n 30 min i i 8 m m FCCP / EGTA 0 0 6 m M 8 5 Calculated local PHD2 activity : 7 9 m M AntA 120 Average iO 2 [ m M] 6 * * 160 iO 2 [ m M] Km (O 2 ) = 250 m M; 5 35 m M O 2 120 80 4 v = Vmax[S]/(Km+[S]) 3 12.3 % V max 80 40 2 40 1 O 2 [ m M] 0 100 5 0 0 0 20 40 60 80 25 30 35 40 45 50 0 25 50 75 LT [ m s] AntA treatment [min] Cell cross section [ m m] Zhdanov ov A et al, AJP-CP, 2015 Zhdanov ov AV – Am . J. Cell Physiol ol.. 2015 7

  8. 11/15/2017 Multicellular spheroids • Cell co-cultures • Organoids • Engineered tissue scaffolds • Vascularised tissue • Environmental control and standardization remain bottlenecks FLIM platforms can address these 8

  9. 11/15/2017 Neurospheres cultured • at 21% and 4% O 2 with NanO2 probe. Imaged at 21% O 2 . • Jenki kins J. et al . – Biochem em . J. 2016  Intestinal Organoid (SIO) Models: ◦ Establish cultures ◦ Characterise O 2 and respiration activity ◦ Standardize, reduce heterogeneity ◦ Conduct physiological studies 500 μ m O 2 gradient between basal (blue) and apical (violet) membranes (n=10): 9

  10. 11/15/2017 Biophysics Lab (University College Cork):  ◦ Dr. Alex Zhdanov, Dr. Ruslan Dmitriev ◦ Dr. Irina Okkelman  T – probe (NanO2 analog) – ◦ Dr. James Jenkins ◦ All former lab members Anal Chem, m, 2016, 88: 10566  Profs. Sergei Borisov (Graz University of Technology, Austria)  pH probe - J. Mater. Chem. m. B, 2014, 2: 6792  Dr. H. Dussmann (Royal College of Surgeons Ireland) Dr. V.P. Baklaushev (Pirogov Medical University, Russia)   Cell Cycle assay (Hoechst 2334 and dBrU) – Dr. M. Tangney, (CCRC, University College Cork)  PLOS One, 2016, 11: e0167385  K + -probe - Adv Funct Mater (in press)  Prof John Cryan, Dr Anna Golubeva  Dr Silvia Melgar, Dr Niall Hyland  More in development  Prof Ulla Knaus, Dr Gabriella Aviello Funding: Science Foundation Ireland, Enterprise Ireland Follow us at: http://photobiolabcork.blogspot.ie 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend