outline
play

Outline SUSY Flavor Problem Motivation Model Predictions Summary - PowerPoint PPT Presentation

Outline SUSY Flavor Problem Motivation Model Predictions Summary and Conclusions Steven Gabriel, OSU, Pheno 08 p. 1/1 SUSY Flavor Problem Strongest constraint from K 0 K 0 mixing: sq < 10 4 s /m 2 d


  1. Outline • SUSY Flavor Problem • Motivation • Model • Predictions • Summary and Conclusions Steven Gabriel, OSU, Pheno ’08 – p. 1/1

  2. SUSY Flavor Problem • Strongest constraint from K 0 − K 0 mixing: ∆ ˜ sq < 10 − 4 s /m 2 d ˜ • Solved by assuming universality: � � m 2 0 m 2 1 s = ˜ d ˜ m 2 0 1 ˜ d ˜ s d s ˜ ˜ g g ˜ ˜ s d s d Steven Gabriel, OSU, Pheno ’08 – p. 2/1

  3. sl < 10 − 3 µ /m 2 • Constraint from µ → eγ : ∆ ˜ e ˜ • It’s similarly assumed: � � m 2 0 m 2 2 µ = e ˜ ˜ m 2 0 2 ˜ e c γ ˜ µ µ e c λ Steven Gabriel, OSU, Pheno ’08 – p. 3/1

  4. Motivation • It has been pointed out that the form   0 A 0 B ′ − A 0     0 B C for fermion mass matrices is consistent with phenomenology (Weinberg; Wilczek and Zee; Fritzsch) • Factorizable Form (phases of A, B, B ′ , C can be absorbed into fermion fields) = ⇒ We wish to obtain this with some symmetry • Consider symmetry with 3 families belonging to 2 + 1 Steven Gabriel, OSU, Pheno ’08 – p. 4/1

  5. • ( ˜ s ) , (˜ µ ) in same multiplets = ⇒ Explains mass d, ˜ e, ˜ degeneracy • To generate fermion masses use 2 + 1 pairs of Higgs doublets: ( H u,d 1 , H u,d 2 ) + H u,d 3 • For 2 + 1 of SU (2) , fermion mass matrices have form   y ′ 0 y 1 H 3 2 H 2 − y ′ − y 1 H 3 0 2 H 1     y 2 H 2 − y 2 H 1 y 3 H 3 • If � H u 1 � / � H u 2 � = � H d 1 � / � H d 2 � , 13 and 31 entries can be rotated away Steven Gabriel, OSU, Pheno ’08 – p. 5/1

  6. • If full (local) SU (2) , D -terms cause FCNC problems = ⇒ Discrete subgroups of SU (2) • The Higgs mass matrix ( W = H u i M ij H d j )   0 a cb 1 M = − a 0 cb 2     b 1 b 2 0 can give large masses to all but one pair of doublets ("doublet-doublet splitting") = ⇒ MSSM at low energy 2 H u 1 H u 2 − a ∗ H u 2 H d 1 H d 2 + a ∗ H d H u = b ∗ | b 1 | 2 + | b 2 | 2 + | a | 2 , H d = c ∗ b ∗ 1 − b ∗ 1 − c ∗ b ∗ 3 3 | c | 2 | b 1 | 2 + | c | 2 | b 2 | 2 + | a | 2 � � Steven Gabriel, OSU, Pheno ’08 – p. 6/1

  7. Fermion Mass Matrices:   B ′ 0 A u a u b 1 H u B ′  , − A u a 0 u b 2   | b 1 | 2 + | b 2 | 2 + | a | 2 �  B u b 1 B u b 2 C u a   B ′ 0 A d a d cb 1 H d B ′ − A d a 0 d cb 2   | c | 2 | b 1 | 2 + | c | 2 | b 2 | 2 + | a | 2 �   B d cb 1 B d cb 2 C d a • 13,31 entries can be rotated away • For real Yukawas, only complex c gives CP violation Steven Gabriel, OSU, Pheno ’08 – p. 7/1

  8. The Group T ′ • T ′ is the double covering of A 4 • Only subgroup of SU (2) with doublets that are not self-conjugate • Smallest subgroup of SU (2) under which 3 does not break up Representations of T ′ : • true singlet, 1 • conjugate pair of singlets, 1 ′ , 1 ′′ • real triplet, 3 • pseudoreal doublet, 2 • conjugate pair of doublets, 2 ′ , 2 ′′ Steven Gabriel, OSU, Pheno ’08 – p. 8/1

  9. T ′ × Z 6 Model SU (2) L Doublets: H u , H d : (2 ′ , ω ); H u 3 : (1 ′ , ω ); H ′ u , H ′ d : (2 , ω 2 ); 3 , H d H ′ u 3 , H ′ d 3 : (1 ′ , − ω 2 ); H ′′ u : (1 ′′ , − ω ); H ′′ d : (1 ′′ , − ω 2 ); 3 3 Q : (2 ′ , ω ); Q 3 : (1 ′ , ω ) SU (2) L Singlets: T : (3 , 1); D : (2 ′ , − 1); D ′ : (2 ′′ , − 1); S 1 : (1 , ω 2 ); S 2 : (1 , ω ); S 3 : (1 , − ω ); S 4 : (1 , − ω 2 ); S 5 : (1 , − 1); Q c : (2 ′ , ω ); Q c 3 : (1 ′ , ω ) • ω = e i 2 π 3 • Assignment commutes with SO (10) Grand Unification Steven Gabriel, OSU, Pheno ’08 – p. 9/1

  10. Superpotential for SM Singlet Higgs: W = a 1 DD ′ + a 2 T 2 + b 1 T 3 + b 2 D 2 T + b 3 D ′ 2 T + b 4 DD ′ T + a 3 S 1 S 2 + a 4 S 3 S 4 + a 5 S 2 5 + b 5 S 3 1 + b 6 S 3 2 + b 7 S 2 S 2 3 + b 8 S 1 S 2 4 + b 9 S 1 S 3 S 5 + b 10 S 2 S 4 S 5 • Can generate VEV’s for all fields • No flat directions or accidental symmetries Steven Gabriel, OSU, Pheno ’08 – p. 10/1

  11. Higgs Doublet Mass Matrix:   β ( T 1 − iω 2 T 2 ) 0 0 0 0 − βωT 3 δD 2   − β ( T 1 + iω 2 T 2 ) 0 0 0 − βωT 3 − δD 1 0       0 0 0 0 0 0 ζS 3     α ( T 1 − iω 2 T 2 ) 0 0 0 0  − αωT 3 λS 1      − α ( T 1 + iω 2 T 2 ) 0 0 0 0 − αωT 3 − λS 1       0 0 0 0 γD 2 − γD 1 ξS 2     0 0 ǫS 2 0 0 m 0 Steven Gabriel, OSU, Pheno ’08 – p. 11/1

  12. Integrating out H ′ u,d , H ′ u,d , H ′′ u,d : 3 3   0 a cb 1 − a 0 cb 2     b 1 b 2 0 � T 2 � � S 2 a = αβ � S 1 � , b 1 = γζ � S 3 D 2 � � S 2 � , b 2 = − γζ � S 3 D 1 � � S 2 � , c = δǫξ 2 � λ ξ ξ γζ � S 3 � • Light modes couple to SM singlet Higgs, H u H d Φ , with � Φ � = 0 in SUSY limit • After SUSY breaking � Φ � ∼ M SUSY Steven Gabriel, OSU, Pheno ’08 – p. 12/1

  13. • c complex = ⇒ spontaneous CP violation • Complex B µ -parameter generated = ⇒ SUSY CP problem not fully solved • Discrete symmetries should come from broken local symmetries so that they are respected by gravity • When SU (2) reps. break up under T ′ , 1 ′ , 1 ′′ and 2 ′ , 2 ′′ always occur in pairs = ⇒ This model can be difficult to obtain from a local symmetry (e.g. 4 → 2 ′ + 2 ′′ , 5 → 3 + 1 ′ + 1 ′′ , 6 → 2 + 2 ′ + 2 ′′ ) • By extending the Abelian part of the symmetry, the model can be altered to use only complete multiplets of SU (2) Steven Gabriel, OSU, Pheno ’08 – p. 13/1

  14. T ′ × Z 3 × Z 6 Model SU (2) L Doublets: H u , H d : (2 , ω, ω ); H u 3 : (1 , ω, ω ); H ′ u , H ′ d : (2 , 1 , ω 2 ); 3 , H d H ′ u 3 , H ′ d 3 : (1 , ω, − ω 2 ); H ′′ u : (1 , ω 2 , − ω ); H ′′ d : (1 , ω 2 , − ω 2 ); 3 3 Q : (2 , ω, ω ); Q 3 : (1 , ω, ω ) SU (2) L Singlets: T : (3 , ω, 1); T ′ : (3 , ω 2 , 1); D : (2 , ω, − 1); D ′ : (2 , ω 2 , − 1); S 1 : (1 , 1 , ω 2 ); S 2 : (1 , 1 , ω ); S 3 : (1 , 1 , − ω ); S 4 : (1 , 1 , − ω 2 ); S 5 : (1 , 1 , − 1); Q c : (2 , ω, ω ); Q c 3 : (1 , ω, ω ) • SU (2) can be broken to T ′ with a 7 Steven Gabriel, OSU, Pheno ’08 – p. 14/1

  15. Predictions • Mass matrix forms with spontaneous CP violation:     0 A d 0 0 A u 0 B ′ B ′ u e iφ M d =  , M u = − A d 0 − A u 0     d    B u e iφ 0 B d C d 0 C u Small Mixing ( C u , C d >> B u , B d , B ′ u , B ′ d >> A u , A d ): � • | V ub /V cb | = m u /m c • Assuming known quark masses: 0 . 15 < θ C < 0 . 29 Large Mixing ( C u , C d ∼ B u , B d >> B ′ u , B ′ d >> A u , A d ): � � 2 � � m s /m b • θ C ≃ m d /m s 1 − 1 | V cb | 4 Steven Gabriel, OSU, Pheno ’08 – p. 15/1

  16. Summary A Model with the following properties: • MSSM at low energy • Solves SUSY flavor problem • Ameliorates SUSY CP problem • Solves µ problem • Consistent with Grand Unification Steven Gabriel, OSU, Pheno ’08 – p. 16/1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend