out line
play

Out line Wrap up d-separ at ion I nf erence in Bayes Net s Bayes - PDF document

Out line Wrap up d-separ at ion I nf erence in Bayes Net s Bayes Net s (cont ) Variable Eliminat ion CS 486/ 686 Univer sit y of Wat erloo May 31, 2005 2 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K.


  1. Out line • Wrap up d-separ at ion • I nf erence in Bayes Net s Bayes Net s (cont ) • Variable Eliminat ion CS 486/ 686 Univer sit y of Wat erloo May 31, 2005 2 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson D-Separat ion: I nt uit ions D-Separat ion: I nt uit ions • Subway and Therm are dependent ; but are independent given Flu (since Flu blocks t he only pat h) • Aches and Fever are dependent ; but are independent given Flu (since Flu blocks t he only pat h). Similarly f or Aches and Therm (dependent , but indep. given Flu). • Flu and Mal are indep. (given no evidence): Fever blocks t he pat h, since it is not in evidence , nor is it s descendant Therm. Flu,Mal are dependent given Fever (or given Therm): not hing blocks pat h now. • Subway,Exot icTrip are indep.; t hey are dependent given Therm; t hey are indep. given Therm and Malaria. This f or exact ly t he same reasons f or Flu/ Mal above. 3 4 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson Simple Forwar d I nf erence (Chain) I nf erence in Bayes Net s • Comput ing prior require simple f orward “propagat ion” of probabilit ies • The independence sanct ioned by D- • P(J )= Σ M,ET P(J |M,ET)P(M,ET) separat ion (and ot her met hods) allows (marginalizat ion) us t o comput e prior and post erior probabilit ies quit e ef f ect ively. P(J )= Σ M,ET P(J |M)P(M|ET)P(ET) • We' ll look at a couple simple examples (chain rule and independence) t o illust rat e. We' ll f ocus on net works P(J )= Σ M P(J |M) Σ ET P(M|ET)P(ET) wit hout loops . (A loop is a cycle in t he (dist ribut ion of sum) underlying undir ect ed gr aph. Recall t he dir ect ed gr aph has no cycles.) Not e: all (f inal) t erms are CPTs in t he BN Not e: only ancest ors of J considered 5 6 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson 1

  2. Simple Forwar d I nf erence (Pooling) Simple For war d I nf erence (Chain) • Same idea applies when we have • Same idea applies wit h mult iple parent s “upst ream” evidence P(Fev) = Σ Flu,M P(Fev| Flu,M) P(Flu,M) = Σ Flu,M P(Fev| Flu,M) P(Flu) P(M) P(J |ET) = Σ M P(J |M,ET) P(M|ET) = Σ M P(J |M) P(M|ET) = Σ Flu,M P(Fev| Flu,M) Σ TS P(Flu| TS) P(TS) Σ ET P(M| ET) P(ET) (J is cond independent of ET given M) • (1) f ollows by summing out rule; (2) by independence of Flu, M; (3) by summing out – not e: all t erms are CPTs in t he Bayes net 7 8 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson Simple Forwar d I nf erence (Pooling) Simple Backward I nf erence • When evidence is downst ream of query • Same idea applies wit h evidence variable, we must reason “backwar ds.” This P(Fev| t s,~M) = Σ Flu P(Fev | Flu,t s,~M) P(Flu| t s,~M) requires t he use of Bayes r ule: = Σ Flu P(Fev| Flu,~M) P(Flu| t s) P(ET | j ) = α P(j | ET) P(ET) = α Σ M P(j | M,ET) P(M| ET) P(ET) = α Σ M P(j | M) P(M| ET) P(ET) • First st ep is j ust Bayes rule – normalizing const ant α is 1/ P(j ); but we needn’t comput e it explicit ly if we comput e P(ET | j ) f or each value of ET: we j ust add up t erms P(j | ET) P(ET) f or all values of ET (t hey sum t o P (j )) 9 10 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson Backward I nf erence (Pooling) Variable Eliminat ion • The int uit ions in t he above examples give us • Same ideas when several pieces of a simple inf erence algorit hm f or net wor ks evidence lie “downst ream” wit hout loops: t he polyt ree algorit hm. P(ET | j ,f ev) = α P(j ,f ev | ET) P(ET) • I nst ead we' ll look at a mor e gener al algorit hm t hat works f or general BNs; but = α Σ M P(j ,f ev | M,ET) P(M| ET) P(ET) t he polyt ree algor it hm will be a special = α Σ M P(j ,f ev | M) P(M| ET) P(ET) case. = α Σ M P(j | M)P(f ev| M)P(M| ET) P(ET) • The algorit hm, variable eliminat ion , simply applies t he summing out rule repeat edly. – Same st eps as bef ore; but now we comput e prob of – To keep comput at ion simple, it exploit s t he bot h pieces of evidence given hypot hesis ET and independence in t he net work and t he abilit y t o combine t hem. Not e: t hey are independent given M; but not given ET. dist ribut e sums inward – St ill must simplif y P (f ev|M) down t o CPTs (as usual) 11 12 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson 2

  3. Fact ors The Product of Two Fact ors • A f unct ion f (X 1 , X 2 ,… , X k ) is also called a • Let f ( X , Y ) & g( Y , Z ) be t wo f act ors wit h f act or . We can view t his as a t able of variables Y in common number s, one f or each inst ant iat ion of t he • The product of f and g, denot ed h = f x g variables X 1 , X 2 ,… , X k. (or somet imes j ust h = f g), is def ined: – A t abular rep’n of a f act or is exponent ial in k h( X , Y , Z ) = f ( X , Y ) x g( Y , Z ) • Each CPT in a Bayes net is a f act or: f (A,B) g(B,C) h(A,B,C) – e.g., Pr(C| A,B) is a f unct ion of t hree variables, A, B, C ab 0.9 bc 0.7 abc 0.63 ab~c 0.27 • Not at ion: f ( X , Y ) denot es a f act or over t he a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02 variables X ∪ Y . (Here X , Y are set s of ~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12 variables.) ~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12 13 14 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson Rest rict ing a Fact or Summing a Var iable Out of a Fact or • Let f (X, Y ) be a f act or wit h var iable X ( Y • Let f (X, Y ) be a f act or wit h var iable X ( Y is a set ) is a set ) • We sum out var iable X f rom f t o produce • We rest rict f act or f t o X=x by set t ing X a new f act or h = Σ X f , which is def ined: t o t he value x and “delet ing”. Def ine h = f X=x as: h( Y ) = f (x, Y ) h( Y ) = Σ x ∊ Dom(X) f (x, Y ) f (A,B) h(B) = f A=a f (A,B) h(B) ab 0.9 b 0.9 ab 0.9 b 1.3 a~b 0.1 ~b 0.1 a~b 0.1 ~b 0.7 ~ab 0.4 ~ab 0.4 ~a~b 0.6 ~a~b 0.6 15 16 CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson Variable Eliminat ion: No Evidence Variable Eliminat ion: No Evidence • Comput ing pr ior probabilit y of query var X • Here’s t he example wit h some numbers can be seen as applying t hese operat ions on f act ors A B C A B C f 2 (A,B) f 3 (B,C) f 1 (A) f 2 (A,B) f 3 (B,C) f 1 (A) f 1 (A) f 2 (A,B) f 3 (B,C) f 4 (B) f 5 (C) • P(C) = Σ A,B P (C|B) P(B| A) P(A) a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625 = Σ B P(C|B) Σ A P (B| A) P(A) ~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375 = Σ B f 3 (B,C) Σ A f 2 (A,B) f 1 (A) ~ab 0.4 ~bc 0.2 = Σ B f 3 (B,C) f 4 (B) ~a~b 0.6 ~b~c 0.8 = f 5 (C) Def ine new f act ors: f 4 (B)= Σ A f 2 (A,B) f 1 (A) and f 5 (C)= Σ B 17 18 f 3 (B,C) f 4 (B) CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson CS486/686 Lecture Slides (c) 2005 C. Boutilier, P. Poupart & K. Larson 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend