optimal control of parabolic pdes with state constraints
play

Optimal control of parabolic PDEs with state constraints Francesco - PowerPoint PPT Presentation

Optimal control of parabolic PDEs with state constraints Francesco Ludovici Joint work with Ira Neitzel and Winnifried Wollner WIAM2016 Hamburg, 31.08 - 02.09 TUD | F . Ludovici | 1 Problematics in high-quality glass cooling Avoid


  1. Optimal control of parabolic PDEs with state constraints Francesco Ludovici Joint work with Ira Neitzel and Winnifried Wollner WIAM2016 Hamburg, 31.08 - 02.09 TUD | F . Ludovici | 1

  2. Problematics in high-quality glass cooling ◮ Avoid damages due to thermal stress Consequences on the model ◮ Keep track of the temperature gradient inside the glass TUD | F . Ludovici | 2

  3. Problematics in high-quality glass cooling ◮ Avoid damages due to thermal stress ◮ Preserve the quality monitoring the chemical reactions Consequences on the model ◮ Keep track of the temperature gradient inside the glass ◮ Provides a temperature profile TUD | F . Ludovici | 2

  4. Problematics in high-quality glass cooling ◮ Avoid damages due to thermal stress ◮ Preserve the quality monitoring the chemical reactions ◮ Reduce the energy cost of the furnace Consequences on the model ◮ Keep track of the temperature gradient inside the glass ◮ Provides a temperature profile ◮ Control the cooling process TUD | F . Ludovici | 2

  5. Problematics in high-quality glass cooling ◮ Avoid damages due to thermal stress ◮ Preserve the quality monitoring the chemical reactions ◮ Reduce the energy cost of the furnace ◮ High temperature of the process, ca. 1500K Consequences on the model ◮ Keep track of the temperature gradient inside the glass ◮ Provides a temperature profile ◮ Control the cooling process ◮ Transport equation for the radiation intensity I = I ( x , t , s , ν ) TUD | F . Ludovici | 2

  6. TUD | F . Ludovici | 3

  7. For q , u furnace and glass temperature, B ( u , ν ) Planck function for black body radiation in glass, [Clever, Lang ’12] Augmented Objective Functional � T J ( u , q ) = 1 � u − u d � 2 + δ u �∇ u � 2 + δ q ( t )( q − q d ) � � dt 2 0 Equation Constraints � � � � ∂ t u − ∇ · ( κ c ∇ u ) = − B ( u , ν ) − I κ ν dsd ν S ν 0 � s · ∇I + ( κ ν + σ ν ) I = σ ν I ds + κ ν B ( u , ν ) S TUD | F . Ludovici | 4

  8. Boundary and Initial Condition κ c n · ∇ u = h c ( q − u ) + F ( B ( u , ν )) I = r ( n · s ) ¯ I + (1 − n · s ) B ( q , ν ) u ( x , 0) = u 0 TUD | F . Ludovici | 5

  9. Boundary and Initial Condition κ c n · ∇ u = h c ( q − u ) + F ( B ( u , ν )) I = r ( n · s ) ¯ I + (1 − n · s ) B ( q , ν ) u ( x , 0) = u 0 The list of possible applications is wider: ◮ Crystal Growth by sublimation ◮ Cancer treatment by local hypothermia ◮ Material failure TUD | F . Ludovici | 5

  10. Model Problem For I = (0, T ) and Ω ⊂ R n , n = { 2, 3 } smooth domain 1 � � Ω ( u ( x , t ) − u d ( x , t )) 2 dxdt + α � I q ( t ) 2 dt min ( u , q ) ∈ U × Q ad 2 I 2 subject to ∂ t u ( t , x ) − ∆ u ( t , x ) + d ( t , x , u ) = q ( t ) g ( x ) in I × Ω , on I × ∂ Ω , u ( t , x ) = 0 u (0, x ) = u 0 in Ω , and control and state constraints q min ≤ q ( t ) ≤ q max F ( u ) ≤ b , ∀ t ∈ [0, T ], TUD | F . Ludovici | 6

  11. Model Problem with state constraints � |∇ u ( x , t ) | 2 ω ( x ) dx ≤ b , ∀ t ∈ [0, T ], F 1 ( u ) = Ω � F 2 ( u ) = u ( x , t ) ω ( x ) dx ≤ b , ∀ t ∈ [0, T ], Ω the former for the the linear state equation, the latter for the semi-linear. TUD | F . Ludovici | 7

  12. State Equation Control and State Space Q ad = { q ∈ L 2 ( I , R m ) | q min ≤ q ( t ) ≤ q max , a . e . in I } W (0, T ) = { u ∈ L 2 ( I , V ), ∂ t u ∈ L 2 ( I , V ∗ ) } U = { L 2 ( I , H 2 ( Ω ) ∩ H 1 0 ) ∩ L ∞ ( I × Ω ) ∩ H 1 ( I , L 2 ( Ω )) } TUD | F . Ludovici | 8

  13. State Equation Control and State Space Q ad = { q ∈ L 2 ( I , R m ) | q min ≤ q ( t ) ≤ q max , a . e . in I } W (0, T ) = { u ∈ L 2 ( I , V ), ∂ t u ∈ L 2 ( I , V ∗ ) } U = { L 2 ( I , H 2 ( Ω ) ∩ H 1 0 ) ∩ L ∞ ( I × Ω ) ∩ H 1 ( I , L 2 ( Ω )) } Linear Case For q ∈ Q ad , there exists u ∈ U solution of the state equation. U ⊂ C (¯ F 1 : U → C (¯ I , V ) I ) TUD | F . Ludovici | 8

  14. State Equation Control and State Space Q ad = { q ∈ L 2 ( I , R m ) | q min ≤ q ( t ) ≤ q max , a . e . in I } W (0, T ) = { u ∈ L 2 ( I , V ), ∂ t u ∈ L 2 ( I , V ∗ ) } U = { L 2 ( I , H 2 ( Ω ) ∩ H 1 0 ) ∩ L ∞ ( I × Ω ) ∩ H 1 ( I , L 2 ( Ω )) } Semi-Linear Case For q ∈ Q ad , there exists u ∈ W (0, T ) solution of the state equation. W (0, T ) ⊂ C (¯ F 2 : W (0, T ) → C (¯ I , H ) I ) TUD | F . Ludovici | 9

  15. Optimality Conditions Denoting the concatenation of the control-to-state map S : L ∞ ( I , R ) → W (0, T ) ∩ L ∞ ( I × Ω ) and the state constraint F = ( u ( t , x ), ω ( x )) with G := ( F ◦ S ) : L ∞ ( I , R ) → R , we rely on the following linearized Slater’s condition ′ (¯ ∃ q γ ∈ Q ad s . t . G (¯ q ) + G q )( q γ − ¯ q ) ≤ − γ < 0 for some γ ∈ R + , where ¯ q is a local solution in the sense of L 2 ( I , R ). TUD | F . Ludovici | 10

  16. Optimality Conditions Denoting the concatenation of the control-to-state map S : L ∞ ( I , R ) → W (0, T ) ∩ L ∞ ( I × Ω ) and the state constraint F = ( u ( t , x ), ω ( x )) with G := ( F ◦ S ) : L ∞ ( I , R ) → R , we rely on the following linearized Slater’s condition ′ (¯ ∃ q γ ∈ Q ad s . t . G (¯ q ) + G q )( q γ − ¯ q ) ≤ − γ < 0 for some γ ∈ R + , where ¯ q is a local solution in the sense of L 2 ( I , R ). The condition above ensures with standard argument the well-posedness of the optimal control problem as well as first order necessary conditions in KKT-form. TUD | F . Ludovici | 10

  17. Optimality Conditions Issue with state constraints, the adjoint equation reads b ( ϕ , ¯ z ) + ( ϕ , ∂ u d ( · , · , ¯ u )¯ z ) = (¯ u − u d , ϕ ) I + � ¯ µ , F ( ϕ ) � C (¯ I ) ∗ , C (¯ I ) where µ ∈ C (¯ I ) ∗ . TUD | F . Ludovici | 11

  18. Optimality Conditions Issue with state constraints, the adjoint equation reads b ( ϕ , ¯ z ) + ( ϕ , ∂ u d ( · , · , ¯ u )¯ z ) = (¯ u − u d , ϕ ) I + � ¯ µ , F ( ϕ ) � C (¯ I ) ∗ , C (¯ I ) where µ ∈ C (¯ I ) ∗ . For the derivation of convergence rate in the linear setting, one uses � F (¯ u ), ¯ µ � = 0, ¯ µ ≥ 0, F (¯ u ) ≤ 0 to circumvent low regularity of adjoint variable. In our setting, the presence of the semi-linear term requires another approach. TUD | F . Ludovici | 11

  19. Optimality Conditions For the discussion of SSC, we introduce the Hamiltonian and Lagrangian m H ( q , u , z ) = 1 2( u − u d ) 2 + α � � 2 q 2 ( t ) + z � q i ( t ) g i ( x ) − d ( · , · , u ) , i =1 L ( q , µ ) = j ( q ) + � µ , F ( u ) � , and the cone of critical directions: p ∈ L 2 ( I , R ) such that  ≥ 0 if ¯ q i = q min ,  p i ( t ) = ≤ 0 if ¯ q i = q max , for all i = 1, ..., m Ω ∂ q ¯ � = 0 if H i dx � = 0,  ∂ F � ∂ F u ) v p ≤ 0 if F (¯ µ = 0 ∂ u (¯ u ) = 0, ∂ u (¯ u ) v p d ¯ Ω TUD | F . Ludovici | 12

  20. Optimality Conditions We rely on a weak SSC [Casas et al. ’07, De los Reyes et al. ’08] Assumption : let ¯ q be a feasible control fulfilling first-order optimality conditions. We assume the existence of positive constants ν , ξ such that there holds ∂ 2 ¯ L ∂ 2 q p 2 > 0 ∀ p ∈ C ¯ q \ { 0 } , ∂ 2 q ¯ H i , i ≥ ξ ∀ t ∈ I \ E ν i , ∀ i = 1, ..., m , where � � � � ∂ q ¯ E ν i = t ∈ I � | H i dx | ≥ ν � Ω TUD | F . Ludovici | 13

  21. Quadratic growth condition Under the weak SSC and first order necessary conditions, for constants δ , η > 0, there holds q � 2 j (¯ q ) + δ � q − ¯ L 2 ( I , R m ) ≤ j ( q ), � q − ¯ q � L 2 ( I , R ) ≤ η ◮ The proof moves by contradiction. ◮ Two-norm discrepancy removed thanks to q ) p 2 ≤ lim inf j ′′ (¯ k →∞ j ′′ ( q k ) p 2 k k →∞ � p k � 2 k →∞ j ′′ ( q k ) p 2 if p = 0 then Λ lim inf L 2 ( I , R m ) ≤ lim inf k TUD | F . Ludovici | 14

  22. Discretization Time discretization via discontinuous Galerkin method: · Partitioning of ¯ I = [0, T ] in subintervals I n = ( t n − 1 , t n ] of size k n , with maximum size k . · For V = H 1 0 ( Ω ), semi-discrete state and test space: U k = { v k ∈ L 2 ( I , V ) | v k | I n ∈ P 0 ( I n , V ) } Reasons for dG(0): · Admits a variational formulation · Equations for each time intervals · Galerkin ortogonality TUD | F . Ludovici | 15

  23. Discretization With w , ˆ w solutions to backward uncontrolled state equation, the dG (0)-method requires estimates [Meidner et al. ’11] � ( T − t ) � ∂ t w ( t ) � 2 � w − ˆ w � L 1 ( I , L 2 ( Ω )) , � w − ˆ w � H − 2 ( Ω ) , H − 1 ( Ω ) dt , I for the error at the nodal points t n and in the interior of I n . TUD | F . Ludovici | 16

  24. Discretization With w , ˆ w solutions to backward uncontrolled state equation, the dG (0)-method requires estimates [Meidner et al. ’11] � ( T − t ) � ∂ t w ( t ) � 2 � w − ˆ w � L 1 ( I , L 2 ( Ω )) , � w − ˆ w � H − 2 ( Ω ) , H − 1 ( Ω ) dt , I for the error at the nodal points t n and in the interior of I n . To extend the estimates to the semilinear case, [Nochetto ’88] � d ( u ( t , x )) − d ( u k ( t , x )) if u ( t , x ) � = u k ( t , x ) ˜ u ( t , x ) − u k ( t , x ) d = 0 else. exploiting ˜ d bounded in L ∞ ( I × Ω ). TUD | F . Ludovici | 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend