optimal control of non smooth partial differential
play

Optimal control of non-smooth partial differential equations Vu Huu - PowerPoint PPT Presentation

Optimal control of non-smooth partial differential equations Vu Huu Nhu 1 Christian Clason Arnd Rsch Stephan Walther 2 Constantin Christof Christian Meyer 1 Faculty of Mathematics, Universitt Duisburg-Essen 2 Faculty of Mathematics, TU


  1. Optimal control of non-smooth partial differential equations Vu Huu Nhu 1 Christian Clason Arnd Rösch Stephan Walther 2 Constantin Christof Christian Meyer 1 Faculty of Mathematics, Universität Duisburg-Essen 2 Faculty of Mathematics, TU Dortmund Workshop “New Trends in PDE-constrained Optimization” RICAM, Linz, October 14, 2019 Overview Semilinear PDEs Quasilinear PDEs 1 / 25

  2. Motivation: PDE-constrained optimization min u , y F ( y ) + G ( u ) such that E ( y , u ) = 0 Standard questions: 1 existence of solutions � direct method of calculus of variations 2 characterization of solutions � (necessary) optimality conditions 3 computation of solutions � gradient, Newton-type methods Current research: F or G not differentiable (constraints, sparsity, impulse noise) E not differentiable Overview Semilinear PDEs Quasilinear PDEs 2 / 25

  3. Overview 1 Non-smooth equations Optimality conditions Semilinear PDEs 2 Optimality conditions Numerical solution Quasilinear PDEs 3 Optimality conditions Numerical solution Overview Semilinear PDEs Quasilinear PDEs 3 / 25

  4. Motivation: non-smooth equations Non-smooth equations: describe models with sharp phase transitions dual formulation of variational inequalities examples: free boundary problems (ice–water), contact problems with friction, non-Newtonian fluid flow, ... Two-phase Stefan problem for all ϕ ∈ H 1 ( Q ) with ϕ ( · , T ) = 0 � – y , ϕ t � + �∇ θ ( y ), ∇ ϕ � = � u , ϕ �  y ( x , t ) y ( x , t ) � 0   θ ( y ( x , t )) = 0 y ( x , t ) ∈ [0, 1]   y ( x , t ) – 1 y ( x , t ) � 1 Overview Semilinear PDEs Quasilinear PDEs 4 / 25

  5. Motivation: non-smooth equations Model problem 1: semilinear “Saran wrap equation” – ∆ y + max{0, y } = u y | ∂ Ω = 0 superposition operator: max : L 2 ( Ω ) → L 2 ( Ω ) pointwise a.e. model for membrane partially in water: y deflection, u force can be extended to arbitrary f ( y ) piecewise differentiable well-posed (in suitable spaces) u �→ y nonlinear, Lipschitz (in suitable spaces) u �→ y not Gâteaux differentiable unless |{ x : y ( x ) = 0}| = 0 Overview Semilinear P DEs Quasilinear PDEs 5 / 25

  6. Motivation: non-smooth equations Model problem 2: quasilinear heat conduction – ∇ · [ a ( y ) ∇ y ] = u y | ∂ Ω = 0 superposition operator: a : L 2 ( Ω ) → L 2 ( Ω ) pointwise a.e. a : R → R bounded from below, Lipschitz (or PC 1 ) nonlinear material-dependent conductivity law e.g., a ( y ) = 1 + | y | well-posed (in suitable spaces) u �→ y nonlinear, continuous (in suitable spaces) u �→ y not Gâteaux differentiable in general Overview Semilinear P DEs Quasilinear PDEs 6 / 25

  7. Motivation: optimality conditions F ( ¯ x ) = min x ∈ X F ( x ) s.t. x ∈ C Optimality conditions ( F differentiable): 1 primal: directional derivative, tangent cone F ′ ( ¯ x ; h ) � 0 for all h ∈ T C ⊂ X 2 dual: (suitable) subdifferential, indicator functional x ) ⊂ X ∗ 0 ∈ ∂ [ F + δ C ]( ¯ 3 primal-dual: calculus rules, normal cone ( � Lagrange multiplier) F ′ ( ¯ x ) ⊂ X ∗ x ) + ¯ p = 0, p ∈ N C ( ¯ ¯ Overview Semilinear P DEs Quasilinear PDEs 7 / 25

  8. Motivation: optimality conditions J ( ¯ u , ¯ y ) = u ∈ X , y ∈ Y J ( u , y ) min s.t. E ( u , y ) = 0 Unique solution y = S ( u ) F ( u ) := J ( u , S ( u )) (differentiable) � 1 primal: directional derivative F ′ ( ¯ u ; h ) � 0 for all h ∈ X 2 dual: Fréchet derivative 0 = F ′ ( ¯ u ) ⊂ X ∗ 3 primal-dual: implicit function theorem � adjoint state J ′ p = S ′ ( ¯ u ) ∗ J ′ u ( ¯ u , S ( ¯ u )) + ¯ p = 0, ¯ y ( ¯ u , S ( ¯ u )) Overview Semilinear P DEs Quasilinear PDEs 8 / 25

  9. Motivation: optimality conditions J ( ¯ u , ¯ y ) = u ∈ X , y ∈ Y J ( u , y ) min s.t. E ( u , y ) = 0 Unique solution y = S ( u ), not Gâteaux differentiable 1 primal: directional derivative F ′ ( ¯ u ; h ) � 0 for all h ∈ X 2 dual: (suitable) subdifferential u ) ⊂ X ∗ 0 ∈ ∂ F ( ¯ 3 primal-dual: chain rule or limit process ( � adjoint state) J ′ u ) ∗ J ′ u ( ¯ u , S ( ¯ u )) + ¯ p = 0, ¯ p ∈ ∂ S ( ¯ y ( ¯ u , S ( ¯ u )) Overview Semilinear P DEs Quasilinear PDEs 9 / 25

  10. Motivation: subdifferentials S : X → Y not Gâteaux differentiable: Bouligand subdifferential � � � there exists { u n } with u n → u � ∂ B S ( u ) := G u ∈ L ( X , Y ) � and S ′ ( u n ) → G u � � (set of all limits of Gâteaux derivatives in nearby points) Clarke subdifferential ∂ C S ( u ) := cl co ∂ B S ( u ) (closed convex hull) X , Y infinite-dimensional � topology matters (strong, weak(- ∗ ),...) Overview Semilinear P DEs Quasilinear PDEs 10 / 25

  11. Overview 1 Non-smooth equations Optimality conditions Semilinear PDEs 2 Optimality conditions Numerical solution Quasilinear PDEs 3 Optimality conditions Numerical solution Overview Semilinear P DEs Quasilinear PDEs 11 / 25

  12. Optimal control of semilinear PDE Semilinear “Saran wrap equation” min 0 ( Ω ) J ( y , u ) s.t. – ∆ y + max{0, y } = u u ∈ L 2 ( Ω ), y ∈ H 1 existence of minimizer ( ¯ u , ¯ y ) for J weakly l.s.c., coercive S : u �→ y Lipschitz from L 2 ( Ω ) → H 1 0 ( Ω ) (standard argument: max Lipschitz and monotone) S Gâteaux differentiable at u if and only if S ( u ) � = 0 a.e. reduced functional F ( u ) := J ( S ( u ), u ) Overview Semilinear P DEs Quasilinear PDEs 12 / 25

  13. Semilinear: primal optimality conditions Primal optimality conditions F ′ ( ¯ u ; h ) = J ′ u ) S ′ ( ¯ u ; h ) + J ′ for all h ∈ L 2 ( Ω ) y ( ¯ y , ¯ u ( ¯ y , ¯ u ) h � 0 if J continuously Fréchet differentiable, partial derivatives J ′ y , J ′ u standard proof: pass to the limit in F ( ¯ u ) � F ( u + th ) directional derivative: w := S ′ ( u ; h ) ∈ H 1 0 ( Ω ) satisfies – ∆ w + 1 { S ( u )>0} w + 1 { S ( u )=0} max{0, w } = h � Gâteaux derivative S ′ ( u ) h = w iff S ( u ) � = 0 a.e. Overview Semilinear P DEs Quasilinear PDEs 13 / 25

  14. Semilinear: primal-dual optimality conditions Primal-dual optimality conditions p + J ′ u ( ¯ y , ¯ u ) = 0, y = S ( ¯ u ) ¯ ¯ p = J ′ – ∆ ¯ p + ξ ¯ y ( ¯ y , ¯ u )  {1} ¯ y ( x ) > 0  ξ ( x ) ∈ ∂ C max( ¯ y ( x )) := a.e. {0} y ( x ) < 0 ¯  [0, 1] y ( x ) = 0 ¯ proof: C 1 approximation max ε , localization � standard conditions pass to limit ε → 0, use regularity of adjoint PDE G ξ := (– ∆ + ξ ) –1 ∈ ∂ w B S ( ¯ u ) (weak limit of Gâteaux derivatives) ξ ( x ) ∈ {0, 1} a.e. G ξ ∈ ∂ B S ( ¯ u ) � � implies dual optimality condition 0 ∈ ∂ B F ( ¯ u ) ⊂ ∂ C F ( ¯ u ) Overview Semilinear P DEs Quasilinear PDEs 14 / 25

  15. Semilinear: strong optimality conditions Strong optimality conditions p + J ′ u ( ¯ y , ¯ u ) = 0, y = S ( ¯ u ) ¯ ¯ p = J ′ – ∆ ¯ p + ξ ¯ y ( ¯ y , ¯ u ) ξ ( x ) ∈ ∂ C max( ¯ y ( x )) a.e. p ( x ) � 0 a.e. where y ( x ) = 0 ¯ ¯ proof: test adjoint equation, use density equivalent to primal optimality condition proof: pointwise argument using structure of max overdetermined: not useful for numerical computation Overview Semilinear P DEs Quasilinear PDEs 15 / 25

  16. Semilinear: numerical solution J ( y , u ) = 1 L 2 ( Ω ) + 1 2 � y – y d � 2 2 � u � 2 L 2 ( Ω ) finite element discretization, mass lumping for max-term eliminate control max convex � proximal point reformulation of ξ i ∈ ∂ C max( y i ) A h y + D h max( y ) = – 1 αM h p A h p + D h ξ ◦ p = M h ( y – y d ) y = prox τ ( y + τ ξ ) Overview Semilinear P DEs Quasilinear PDEs 16 / 25

  17. Semilinear: numerical solution A h y + D h max( y ) = – 1 αM h p A h p + D h ξ ◦ p = M h ( y – y d ) y = prox τ ( y + τ ξ ) � semi-smooth Newton method but: Newton matrix singular for p i = y i + τξ = 0 � eliminate corresponding components in iteration test with constructed y d � S not differentiable at solution Overview Semilinear P DEs Quasilinear PDEs 16 / 25

  18. Semilinear: numerical example � y h – ¯ y � L 2 � p h – ¯ p � L 2 h α τ # SSN � ¯ y � L 2 � ¯ p � L 2 3.030 e– 2 1 e– 4 1 e– 12 8.708 e– 1 1.606 e– 2 4 1.538 e– 2 1 e– 4 1 e– 12 2.281 e– 1 4.541 e– 3 5 7.752 e– 3 1 e– 4 1 e– 12 5.821 e– 2 1.209 e– 3 3 3.891 e– 3 1 e– 4 1 e– 12 1.469 e– 2 3.119 e– 4 3 7.752 e– 3 1 e– 4 1 e– 6 – – no conv. 7.752 e– 3 1 e– 4 1 e– 8 – – no conv. 7.752 e– 3 1 e– 4 1 e– 10 5.821 e– 2 1.209 e– 3 3 7.752 e– 3 1 e– 4 1 e– 14 5.821 e– 2 1.209 e– 3 3 7.752 e– 3 1 e– 2 1 e– 12 3.007 e– 3 1.747 e– 3 2 7.752 e– 3 1 e– 3 1 e– 12 1.659 e– 2 1.512 e– 3 2 7.752 e– 3 1 e– 5 1 e– 12 1.692 e– 1 8.659 e– 4 5 7.752 e– 3 1 e– 6 1 e– 12 – – no conv. Overview Semilinear P DEs Quasilinear PDEs 17 / 25

  19. Overview 1 Non-smooth equations Optimality conditions Semilinear PDEs 2 Optimality conditions Numerical solution Quasilinear PDEs 3 Optimality conditions Numerical solution Overview Semilinear P DEs Quasilinear PDEs 18 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend