optical lattices
play

Optical lattices H el` ene Perrin Laboratoire de physique des - PowerPoint PPT Presentation

Optical lattices H el` ene Perrin Laboratoire de physique des lasers, CNRS-Universit e Paris 13 Sorbonne Paris Cit e Exploring new quantum gases Les Houches, September 1425, 2015 H el` ene Perrin, LPL Les Houches 2015


  1. Optical lattices H´ el` ene Perrin Laboratoire de physique des lasers, CNRS-Universit´ e Paris 13 Sorbonne Paris Cit´ e Exploring new quantum gases Les Houches, September 14–25, 2015 H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  2. Principle of optical lattices Standing waves along 1, 2 or 3 axes, with different frequencies. 2 standing waves: 2D lattice of tubes 3 standing waves: 3D lattice I. Bloch, Nat. Phys. (2005) H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  3. Band structure V 0 = 0 �� ���� ������ �� [ ���� ] �� Comparison with free particle �� (left) of harmonic approximation �� (right) �� � � - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  4. Band structure V 0 = E rec V 0 = E rec �� ��� ���� ������ �� [ ���� ] ���� ������ �� [ ���� ] �� ��� �� ��� �� ��� �� ��� � ��� � ��� - ��� - ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� - �������� � [ � ] ����� - �������� � [ � ] gray zone: potential depth V 0 zoom around q = 1: gap opening H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  5. Band structure V 0 = 2 E rec �� ���� ������ �� [ ���� ] �� �� �� �� � � - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  6. Band structure V 0 = 4 E rec V 0 = 4 E rec �� �� ���� ������ �� [ ���� ] �� ���� ������ �� [ ���� ] �� �� �� �� �� �� �� � � � � - ��� - ��� ��� ��� ��� - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  7. Band structure V 0 = 8 E rec V 0 = 8 E rec �� �� ���� ������ �� [ ���� ] �� ���� ������ �� [ ���� ] �� �� �� �� �� �� �� � � � � - ��� - ��� ��� ��� ��� - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  8. Band structure V 0 = 16 E rec V 0 = 16 E rec �� �� ���� ������ �� [ ���� ] �� ���� ������ �� [ ���� ] �� �� �� �� �� �� �� � � � � - ��� - ��� ��� ��� ��� - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  9. Band structure V 0 = 25 E rec �� ���� ������ �� [ ���� ] �� �� �� �� � � - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  10. Band structure V 0 = 32 E rec �� ���� ������ �� [ ���� ] �� �� �� �� � � - ��� - ��� ��� ��� ��� ����� - �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  11. Bloch functions Bloch functions resemble plane waves at low V 0 , and series of peaks at large V 0 . � = �� � = � ��� V0 = 0 ��� V0 = 2 ��� [ ��� ] lowest band V0 = 4 V 0 = ��� V0 = 8 0 . . . 32 E rec V0 = 16 ��� V0 = 32 ��� - ��� - ��� - ��� ��� ��� ��� ��� �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  12. Bloch functions Bloch functions resemble plane waves at low V 0 , and series of peaks at large V 0 . � = �� � = � � V0 = 0 � first excited V0 = 2 ��� [ ��� ] band V0 = 4 � V0 = 8 V 0 = V0 = 16 0 . . . 32 E rec - � V0 = 32 - � - ��� - ��� - ��� ��� ��� ��� ��� �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  13. Momentum comb: sudden release Sudden release of the optical lattice: the momentum distribution presents a periodicity 2 � k . Expansion with time bosons in a 3D lattice Observation along two orthogonal 2 ms 6 ms 10 ms 14 ms 18 ms axes ⇒ recover the 3D distribution Interference between the wells From Markus Greiner’s PhD thesis. H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  14. Band mapping: adiabatic release bosons in a 2D lattice Example: population in 2 bands (Greiner et al. 2001) V 0 = 4 E rec 10 10 5 5 0 0 ⇔ n = 0 only 10 several bands q/k − 1 0 1 5 0 q/k fermions in a 3D lattice describe − 3 − 2 − 1 0 1 2 3 (K¨ ohl et al. 2004) → 0 V 0 − noninteracting ~ − 3 − 2 − 1 0 1 2 3 10 5 noninteracting p/ ( ~ k ) 0 − 3 − 2 − 1 0 1 2 3 H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  15. Wannier functions Wannier functions are located around a given lattice site. � = �� � � = � � = �� � � = � � = �� � � = � ��� ��� ��� � � = � � ��� � � = � � ��� � � = � � ��� ��� ��� ��� � ��� ( � ) � ��� ( � ) � ��� ( � ) ��� ��� ��� ��� ��� ��� - � - � - � � � � � - � - � - � � � � � - � - � - � � � � � �������� � [ � ] �������� � [ � ] �������� � [ � ] � = �� � � = � � = �� � � = � � = �� � � = � ��� ��� ��� � � = � � ��� � � = � � ��� � � = �� � ��� ��� ��� ��� � ��� ( � ) � ��� ( � ) � ��� ( � ) ��� ��� ��� ��� ��� ��� - � - � - � � � � � - � - � - � � � � � - � - � - � � � � � �������� � [ � ] �������� � [ � ] �������� � [ � ] H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  16. Mott transition Observation of the Mott insulator to superfluid transition (2002): A competition between kinetic energy and interactions Small V 0 / E rec (small U / J ) Greiner et al., Nature 2002 Large V 0 / E rec (large U / J ) H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

  17. Mott transition Mott shells in a lattice + harmonic trap (Greiner/Bloch 2011) (a) (b) SF SF 3.0 MI (n=1) MI n=3 (n=1) SF SF µ /U 2.0 MI (n=2) n=2 MI (n=1) SF 1.0 MI (n=1) n=1 x y J/U H´ el` ene Perrin, LPL – Les Houches 2015 Optical lattices

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend