optical forces applied to atomic cooling
play

Optical forces applied to atomic cooling Bruno N. Santos June 22, - PowerPoint PPT Presentation

Optical forces applied to atomic cooling Bruno N. Santos June 22, 2020 IFSC-USP Instituto de Fsica de So Carlos 1 Summary 1. Interaction between two-level atoms and light 2. Radiation pressure and dipole gradient forces 3. Cooling of


  1. Optical forces applied to atomic cooling Bruno N. Santos June 22, 2020 IFSC-USP Instituto de Física de São Carlos 1

  2. Summary 1. Interaction between two-level atoms and light 2. Radiation pressure and dipole gradient forces 3. Cooling of atomic gases 2

  3. Summary 1. Interaction between two-level atoms and light 2. Radiation pressure and dipole gradient forces 3. Cooling of atomic gases 2

  4. Summary 1. Interaction between two-level atoms and light 2. Radiation pressure and dipole gradient forces 3. Cooling of atomic gases 2

  5. Interaction between atoms and light 3

  6. Two-level atoms Two-level system [ ] ℏ ω 1 0 [ ˆ H atom ] = 0 ℏ ω 2 Two-level atoms Interaction between atoms and light 4 • •

  7. Two-level atoms Two-level system [ ] ℏ ω 1 0 [ ˆ H atom ] = 0 ℏ ω 2 Two-level atoms Interaction between atoms and light 4 • •

  8. Spherical symmetry Transition dipole moment Two-level atoms Two-level system Ideal atomic dipole µ ∗ | 1 ⟩ ⟨ 2 | d = ⃗ µ | 2 ⟩ ⟨ 1 | + ⃗ ⃗ µ ≡ ⟨ 2 | d | 1 ⟩ � �� � [ ] ℏ ω 1 0 [ ˆ H atom ] = ⟨ n | d | n ⟩ = 0 0 ℏ ω 2 � �� � Two-level atoms Interaction between atoms and light 4 • •

  9. Spherical symmetry Transition dipole moment Two-level atoms Two-level system Ideal atomic dipole µ ∗ | 1 ⟩ ⟨ 2 | d = ⃗ µ | 2 ⟩ ⟨ 1 | + ⃗ ⃗ µ ≡ ⟨ 2 | d | 1 ⟩ � �� � [ ] ℏ ω 1 0 [ ˆ H atom ] = ⟨ n | d | n ⟩ = 0 0 ℏ ω 2 � �� � Two-level atoms Interaction between atoms and light 4 • •

  10. Dipolar interaction Dirac picture Interaction Hamiltonian Monochromatic waves ( E 0 ) 2 e i ( k · r + ωt ) + E ∗ 2 e − i ( k · r + ωt ) 0 E = ⃗ ϵ E 0 = E 0 ( r ) → Complex amplitude Interaction Hamiltonian U † ˆ U = e − i ˆ ˆ H int = ˆ ˜ H int ˆ , ˆ H atom t/ ℏ H int = − d · E → U � �� � � �� � Interaction Hamiltonian Interaction between atoms and light 5 • •

  11. Dipolar interaction Dirac picture Interaction Hamiltonian Monochromatic waves ( E 0 ) 2 e i ( k · r + ωt ) + E ∗ 2 e − i ( k · r + ωt ) 0 E = ⃗ ϵ E 0 = E 0 ( r ) → Complex amplitude Interaction Hamiltonian U † ˆ U = e − i ˆ ˆ H int = ˆ ˜ H int ˆ , ˆ H atom t/ ℏ H int = − d · E → U � �� � � �� � Interaction Hamiltonian Interaction between atoms and light 5 • •

  12. Rotating wave approximation ℏ Ω ≡ ( ⃗ µ · ⃗ ϵ ) E 0 → Rabi frequency µ ∗ · ⃗ ℏ ˜ Ω ≡ ( ⃗ ϵ ) E 0 → Counter-rotating frequency ∆ ≡ ω − ω 0 → Detuning H int = ˜ ˜ H slow + ˜ H fast [ ] Ω ∗ e i ∆ t e − i k · r 0 H slow ] = − ℏ [ ˜ Ω e − i ∆ t e i k · r 2 0 [ ] ˜ Ω ∗ e i ( ω + ω 0 ) t e − i k · r H fast ] = − ℏ 0 [ ˜ ˜ Ω e − i ( ω + ω 0 ) t e i k · r 2 0 Rotating wave approximation Interaction between atoms and light 6 • •

  13. Rotating wave approximation ℏ Ω ≡ ( ⃗ µ · ⃗ ϵ ) E 0 → Rabi frequency µ ∗ · ⃗ ℏ ˜ Ω ≡ ( ⃗ ϵ ) E 0 → Counter-rotating frequency ∆ ≡ ω − ω 0 → Detuning H int = ˜ ˜ H slow + ˜ H fast [ ] Ω ∗ e i ∆ t e − i k · r 0 H slow ] = − ℏ [ ˜ Ω e − i ∆ t e i k · r 2 0 [ ] ˜ Ω ∗ e i ( ω + ω 0 ) t e − i k · r H fast ] = − ℏ 0 [ ˜ ˜ Ω e − i ( ω + ω 0 ) t e i k · r 2 0 Rotating wave approximation Interaction between atoms and light 6 • •

  14. Time-dependent perturbation Rotating wave approximation � �� � [ ] ∫ t ˜ 1 Ω e − i ( ω + ω 0 ) t + Ω ⟨ 2 | ˜ = − ie i k · r ∆ e − i ∆ t H int ( τ ) | 1 ⟩ dτ i ℏ ω + ω 0 0 ∆ ≪ ( ω + ω 0 ) ⇒ ˜ H fast is negligible [ ] Ω ∗ e i ∆ t e − i k · r H int ] = − ℏ 0 H int = ˜ ˜ H slow → [ ˜ Ω e − i ∆ t e i k · r 2 0 Rotating wave approximation Interaction between atoms and light 7 • •

  15. Time-dependent perturbation Rotating wave approximation � �� � [ ] ∫ t ˜ 1 Ω e − i ( ω + ω 0 ) t + Ω ⟨ 2 | ˜ = − ie i k · r ∆ e − i ∆ t H int ( τ ) | 1 ⟩ dτ i ℏ ω + ω 0 0 ∆ ≪ ( ω + ω 0 ) ⇒ ˜ H fast is negligible [ ] Ω ∗ e i ∆ t e − i k · r H int ] = − ℏ 0 H int = ˜ ˜ H slow → [ ˜ Ω e − i ∆ t e i k · r 2 0 Rotating wave approximation Interaction between atoms and light 7 • •

  16. Schrodinger picture Probability of fjndind Dirac picture Coherence Population inversion Density operator Definition and properties ∑ ρ = ˆ p k | ψ k ⟩ ⟨ ψ k | , ⟨ n | ˆ ρ | n ⟩ → the system at state | n ⟩ k p ≡ ⟨ 2 | ˆ ρ | 2 ⟩ − ⟨ 1 | ˆ ρ | 1 ⟩ , q ≡ ⟨ 2 | ˆ ρ | 1 ⟩ � �� � � �� � [ 1 − p ] [ ] 1 − p q ∗ q ∗ e iω 0 t 2 2 [ˆ ρ ] = , [˜ ρ ] = 1+ p 1+ p qe − iω 0 t q 2 2 � �� � � �� � Density operator Interaction between atoms and light 8 • •

  17. Schrodinger picture Probability of fjndind Dirac picture Coherence Population inversion Density operator Definition and properties ∑ ρ = ˆ p k | ψ k ⟩ ⟨ ψ k | , ⟨ n | ˆ ρ | n ⟩ → the system at state | n ⟩ k p ≡ ⟨ 2 | ˆ ρ | 2 ⟩ − ⟨ 1 | ˆ ρ | 1 ⟩ , q ≡ ⟨ 2 | ˆ ρ | 1 ⟩ � �� � � �� � [ 1 − p ] [ ] 1 − p q ∗ q ∗ e iω 0 t 2 2 [ˆ ρ ] = , [˜ ρ ] = 1+ p 1+ p qe − iω 0 t q 2 2 � �� � � �� � Density operator Interaction between atoms and light 8 • •

  18. Time-independent Convenient transformations � �� � [ ] [ ] [ ] 1 − p q ∗ e iωt Ω ∗ 1 0 0 int ] = − ℏ ˆ [ ˜ H ′ ρ ′ ] = 2 S = → → [˜ 1+ p e − i ∆ t qe − iωt 2 0 Ω 2∆ 2 Ω = | Ω | e iφ → q ′ ≡ qe − iωt e − iφ , p ′ ≡ p Bloch vector     q ′∗ + q ′ 2 Re ( q ′ ) i ( q ′∗ − q ′ ) ⃗  2 Im ( q ′ )    β ≡  =    p ′ p ′ Convenient transformations Interaction between atoms and light 9 • •

  19. Time-independent Convenient transformations � �� � [ ] [ ] [ ] 1 − p q ∗ e iωt Ω ∗ 1 0 0 int ] = − ℏ ˆ [ ˜ H ′ ρ ′ ] = 2 S = → → [˜ 1+ p e − i ∆ t qe − iωt 2 0 Ω 2∆ 2 Ω = | Ω | e iφ → q ′ ≡ qe − iωt e − iφ , p ′ ≡ p Bloch vector     q ′∗ + q ′ 2 Re ( q ′ ) i ( q ′∗ − q ′ ) ⃗  2 Im ( q ′ )    β ≡  =    p ′ p ′ Convenient transformations Interaction between atoms and light 9 • •

  20. Bloch equations Master equation Lioville superoperator Lindblat superoperator Master Equation � �� � � �� � ρ ′ ≡ i ρ ′ ≡ Γ ρ ′ , ˜ H ′ 2 ((1 + p ′ ) | 1 ⟩ ⟨ 2 | − [ | 2 ⟩ ⟨ 2 | , ˜ ρ ′ ]) L 0 ˜ ℏ [˜ int ] , L sp ˜ ρ ′ d ˜ ρ ′ dt = ( L 0 + L sp )˜ , Γ → Natural linewidth     − Γ − ∆ 0 0  → d⃗ 2 β dt = A ⃗  − Γ    A = ∆ | Ω |  , a = 0 β + a   2 0 −| Ω | − Γ − Γ � �� � Master Equation Interaction between atoms and light 10 • •

  21. Bloch equations Master equation Lioville superoperator Lindblat superoperator Master Equation � �� � � �� � ρ ′ ≡ i ρ ′ ≡ Γ ρ ′ , ˜ H ′ 2 ((1 + p ′ ) | 1 ⟩ ⟨ 2 | − [ | 2 ⟩ ⟨ 2 | , ˜ ρ ′ ]) L 0 ˜ ℏ [˜ int ] , L sp ˜ ρ ′ d ˜ ρ ′ dt = ( L 0 + L sp )˜ , Γ → Natural linewidth     − Γ − ∆ 0 0  → d⃗ 2 β dt = A ⃗  − Γ    A = ∆ | Ω |  , a = 0 β + a   2 0 −| Ω | − Γ − Γ � �� � Master Equation Interaction between atoms and light 10 • •

  22. Saturation parameter Saturation intensity Stationary solution d⃗ β dt ( ∞ ) = 0 = A ⃗ β ( ∞ ) + a ( ∆ ) 1 Ω − i Γ s q ( ∞ ) e iφ = e i ∆ t p ( ∞ ) = − 1 + s , 2Ω 1 + s � �� � � �� � 2 | Ω | 2 = 2Ω 2 I/I s I s ≡ = 1 + (2∆ / Γ) 2 , 4∆ 2 + Γ 2 Γ 2 I s Stationary solution Interaction between atoms and light 11 • •

  23. Saturation parameter Saturation intensity Stationary solution d⃗ β dt ( ∞ ) = 0 = A ⃗ β ( ∞ ) + a ( ∆ ) 1 Ω − i Γ s q ( ∞ ) e iφ = e i ∆ t p ( ∞ ) = − 1 + s , 2Ω 1 + s � �� � � �� � 2 | Ω | 2 = 2Ω 2 I/I s I s ≡ = 1 + (2∆ / Γ) 2 , 4∆ 2 + Γ 2 Γ 2 I s Stationary solution Interaction between atoms and light 11 • •

  24. Optical forces 12

  25. Dipole gradient force Ehrenfest Theorem Radiation pressure force Deduction � �� � F = −⟨∇ ˆ ρ ∇ ˆ H int ⟩ = − Tr ˆ H int = F rp + F dp , R scatt ≡ Γ s F rp = ℏ k R scatt 2 1 + s � �� � , U dp ≡ ℏ ∆ ℏ ∆ F dp = −∇ U dp 2 ln(1 + s ) ≈ 2 s � �� � ���� far − detuned Deduction Optical forces 13 • •

  26. Dipole gradient force Ehrenfest Theorem Radiation pressure force Deduction � �� � F = −⟨∇ ˆ ρ ∇ ˆ H int ⟩ = − Tr ˆ H int = F rp + F dp , R scatt ≡ Γ s F rp = ℏ k R scatt 2 1 + s � �� � , U dp ≡ ℏ ∆ ℏ ∆ F dp = −∇ U dp 2 ln(1 + s ) ≈ 2 s � �� � ���� far − detuned Deduction Optical forces 13 • •

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend